
1

Welcome
April 9, 2007

World Headquarters
Cincinnati, Ohio

Application Frameworks
an Experience Report

Arden Thomas, Cincom Systems

Cincom Smalltalk

– It makes hard things easy, and the impossible, possible

Outline

• How it all started

• What Should a Framework do?

• Two Application Frameworks

• ValueModels

• ValueInterface

• Examples & Details

• Conclusion

How it Started

• New job

• Tasked to
Correct current problems
Set standards for development
• A guide of how to do things
• a consistent way of doing typical things
• Framework assistance

Opportunity knocks …

• The opportunity to build a new application framework!
This is a fantastic opportunity for a strategic minded developer,
who enjoys the challenge of building new infrastructure

….Reality Sets in

• You can build a new framework ……

….. If it can be done by tomorrow….

• Small shops who expect regular tangible results will often
not allow longer term infrastructure work to occur with
little to show for it in the meantime. Hard sell.

So ….

• Can’t develop in house, but can pick one

What should a framework do?

• Make things easier, simpler, clearer

• This enhances
Productivity
Understandability
Maintainability

What should a framework do?

• How to make things easier, simpler, clearer?
Simplify common tasks by creating methods that do many lines of
work with a clear name
Simplify difficult tasks
Enable / facilitate larger scale reuse and integration

What should a framework do?

• Make things easier, simpler, clearer
Suggest conventions
• Naming
• Where, when and how to build standard things

What should a framework do?

• *** Not impede you, when you need to go
beyond what it makes easy ***

• This is a key factor that can make or break a
framework

Two Frameworks I knew of

• Tim Howard’s DomainAdaptor

• Steve Abell’s ValueInterface

DomainModel

• Tim Howard’s DomainAdaptor
Described in his book
• “The Smalltalk Developer’s Guide to VisualWorks”

Introduced a lot of great ideas for improving ApplicationModel
Showed reader insights into how many things worked
Introduced (to many) the notion of utility methods to simplify
common tasks

ValueInterface

• Steve Abell’s ValueInterface
ParcPlace employee
built LearningWorks w/ Adele Goldberg
Trainer
VI Inspired by slamdunk architecture

What do the frameworks have in common?

• “One” domain, kept in a ValueModel
domainChannel , broker

• Provide assistance building ValueModels to access the
domain’s values

• Hides valueModels so Application is not cluttered with
instance variables

(no instance vars supporting them – hidden in builder)

• Provide for default domain

ValueInterface

• Extends/raises the concept of ValueModels to the
application level

• A simple concept, consistently applied

• Very simple and robust idea
Similar to the attractiveness of Smalltalk
Consistently applied
More than it seems

So - What is the concept of ValueModels???

• Represent a model you can get information from

• Allows a clear simple interface (#value), to a potentially
complex, sophisticated means of providing that value

• Leverages the dependency mechanism to make many
things happen “automagically”

• ValueModels are a capable and heavily used framework
component

• ValueModels are the tinkertoy pieces in VisualWorks

Usefulness of ValueModels?

• simplicity where wanted or needed

• complexity where wanted or better supported

Usefulness of ValueModels?

• “Locality of reference" (in human factors context)
It means it is a good idea to put things in one place or near each
other, for better, easier understanding

Tinkertoy pieces, ValueModels can:

• Simply hold a value (and report changes)

• “Buffer” a value until triggered

• Retrieve some aspect of a subject object

• Compute a value (and re-compute when needed)

• Trigger other things to happen through fundamental use
of dependency

Why Tinkertoy then?

• You can stack or plug valueModels together to get the
desired behavior

name ‘Fred Fiddler’
address ‘26 Walnut Court’
phone ‘2125550602’

Stacking BVH on AA, BlockValue example

[:use :rate | use * rate]phoneBillModel BVBV

VHVH phoneRateModelphoneUseModel

Interface

Application

Model

Domain

Model

Phone Phone Bill

BVHBVH

AAAA VHVH

customerHolder

phoneModel #phone

ValueModel: AspectAdaptor

“value”
“value:
”

“phone”
“phone:”

AAAA

Interface

Application

Model

Domain

Model

Phone

name ‘Fred Fiddler’
address ‘26 Walnut Court’
phone ‘2125550602’

Interface

Application

Model

Domain

Model

ValueModel: No Framework

phoneModel #phone

aCustomer
name ‘Fred Fiddler’
address ‘26 Walnut Court’
phone ‘2125550602’

AAAA

initialize
phoneModel := AspectAdaptor forAspect: #phone.
phoneModel subject: aCustomer.
phoneModel subjectSendsUpdates: true.

- or -
phoneModel := (AspectAdaptor subject: aCustomer sendsUpdates: true) forAspect: #phone.

Phone

phoneModel #phone

ValueModel: AspectAdaptor with Channel

“value”
“value:
”

“phone”
“phone:”

AAAA

Interface

Application

Model

Domain

Model

Phone

name ‘Fred Fiddler’
address ‘26 Walnut Court’
phone ‘2125550602’

customerHolder

phoneModel #phone

ValueModel: AspectAdaptor

“value”
“value:
”

“phone”
“phone:”

AAAA

Interface

Application

Model

Domain

Model

Phone

name ‘Fred Fiddler’
address ‘26 Walnut Court’
phone ‘2125550602’

customerHolder

initialize
phoneModel := (AspectAdaptor subjectChannel: customerHolder sendsUpdates: true) forAspect: #phone.

Interface

Application

Model

Domain

Model

ValueModel: DomainAdaptor Framework

name ‘Fred Fiddler’
address ‘26 Walnut Court’
phone ‘2125550602’

AA (hidden)AA (hidden)

phoneModel
^self aspectAdaptorFor: #phone changeMessage: #phoneChanged.

Phone

domainChannel

Interface

Application

Model

Domain

Model

ValueModel: ValueInterface Framework

name ‘Fred Fiddler’
address ‘26 Walnut Court’
phone ‘2125550602’

AA (hidden)AA (hidden)

Phone #my phone

broker

ValueInterface

“You can solve any computer science
problem by adding a layer of indirection”

• Perhaps, but you want to do it carefully

ValueInterface

• Extends the concept of ValueModels to Applications
By behaving like a valueModel (value, value:)
*** By allowing an application to have the same tinkertoy like
reusability as a valueModel
Yields exceptional reuse and modularity
It also provides some code saving convenience facilities

What was added

• Added in a subclass

• More options in the aspect property
“my”, so you could write “my name”, “my address” as
properties to retrieve that value from the domain
Math, allowed +,-,*,/ for models
Filter can be specified
• Allows a filter to be provided which translates the object into an

appropriate display. i.e. upperCaseFilter

What was added

• Lots of utility methods
hide:, show: , enable: , disable: , widget: , component: ….

• Keyboard Navigation

• suppressChangesWhile:[]

• batchUpdates

Examples

name ‘Wal-Mart’
symbol #WMT
exchange ‘NYSE’

ValueInterface - TradingSecurityApp

Interface

Application

Model

Domain

Model

WalWal--MartMart
name

AA (hidden)AA (hidden)

broker

#my name

WMTWMT
symbol

#my symbol

NYSENYSE
exchange #my exchange

AA AA
AA AA

ValueInterface - SecurityListApp

Interface

Application

Model

Domain

Model

selectionHolder

NavteqNavteq
CiscoCisco

BoeingBoeing
AlcoaAlcoa

WalWal--MartMart

SelectionInList

name ‘Wal-Mart’
symbol #WMT
exchange ‘NYSE’

ValueInterface - SecurityListApp

Interface

Application

Model

Domain

Model

selectionHolder

NavteqNavteq
CiscoCisco

BoeingBoeing
AlcoaAlcoa

WalWal--MartMart

SelectionInList

name ‘Wal-Mart’
symbol #WMT
exchange ‘NYSE’

ValueInterface - SecurityListApp

Interface

Application

Model

Domain

Model

selectionHolder

NavteqNavteq
CiscoCisco

BoeingBoeing
AlcoaAlcoa

WalWal--MartMart

SelectionInList

initialize
self datasetModel list: TradingSecurity all.
self broker: self selectedRow.

name ‘Wal-Mart’
symbol #WMT
exchange ‘NYSE’

ValueInterface

Interface

Application

Model

Domain

Model

WalWal--MartMartname

selectionHolder

WMTWMTsymbol

NYSENYSEexchange
NavteqNavteq
CiscoCisco

BoeingBoeing
AlcoaAlcoa

WalWal--MartMart

SelectionInList

AA AAAA

broker

name ‘Wal-Mart’
symbol #WMT
exchange ‘NYSE’

ValueInterface

Interface

Application

Model

Domain

Model

WalWal--MartMartname

selectionHolder

WMTWMTsymbol

NYSENYSEexchange
NavteqNavteq
CiscoCisco

BoeingBoeing
AlcoaAlcoa

WalWal--MartMart

SelectionInList
AA

AA

AA
initialize
super initialize.
securityListApp := SecurityListApp new.
tradingSecurityApp := TradingSecurityApp in: securityListApp.

Updates
– Application reacting to domain updates
• The standard to use in your domains, when their instVar is changing

is: self changed: #aspectChanged

name: aString
name := aString
self changed: #nameChanged

• You then simply implement the method #nameChanged in your
application; it will be called whenever the domain changes its name

• You no longer need #update: with: from: and its logic to handle this

Updates II
– Application reacting to domain updates

• What if you need the parameters that were sent in
#update:with:from: ????

nameChanged

^[:aReceiver :anAspect :aValue :aModel |

….your update code here ….].

Note: Use aReceiver instead of self in the block

Hooks

• broker:
Use this to hook up your own valueModel as the domain holder

• attachValue:
Override to have behavior before new object becomes domain

• detachValue:
Override to have behavior with the old object before the new
object becomes domain

More hooks

• MyApp value: myDomain

• MyApp withValueHolder

• MyApp in: anotherApp
myApp shares anotherApp’s domain

• MyApp forAspect: #anAspect in: anotherApp
myApp’s domain is anAspect of anotherApp’s domain

Other neat stuff

• void
Like nil, but silently disregards messages it does not understand
Use it sparingly, but nice to have in your toolkit
Use it where you have an option that is not there

Widgetry

• Applicability of this framework to the new Gui framework

• ObservedValue
The new ValueHolder

• UserInterface
The new ApplicationModel

• ObservedUserInterface
The new ValueInterface inspired framework

Conclusion

• Frameworks should make things easier, but not get in
the way

• ValueInterface
A simple, robust concept, consistently applied

• More than it seems

• “One of the best decisions we made”

Contacts

• Arden Thomas, Cincom Systems Inc.
athomas@cincom.com

• Steven T. Abell (Author of ValueInterface)
info@brising.com

mailto:athomas@cincom.com
mailto:info@brising.com

© 2005 Cincom Systems, Inc.
All Rights Reserved

Developed in the U.S.A.

CINCOM and the Quadrant Logo are registered trademarks of Cincom Systems, Inc.

All other trademarks belong to their respective companies.

	Application Frameworks� an Experience Report
	Outline
	How it Started
	ValueInterface
	What do the frameworks have in common?
	ValueInterface
	What was added
	What was added
	Examples
	Updates �– Application reacting to domain updates
	Updates II �– Application reacting to domain updates
	Hooks
	More hooks
	Other neat stuff
	Conclusion
	Contacts

