
Scripting Diagrams with EyeSee

Matthias Junker, Markus Hofstetter
Software Composition Group, University of Bern, Switzerland

Abstract

Presenting numbers in the right way is cru-
cial for understanding their meaning. We present
EyeSee, a diagram drawing engine that allows
for programatic specification of the presentation,
while offering default values that produce unclut-
tered diagrams.

Keywords: diagrams, visualization, meta-
modeling, tooling, metrics, testing, static
analysis, dynamic analysis, evolution analysis

1 Introduction
Using diagrams to reason about quantitative

data is a common practice in today’s age of in-
formation. However, reading and understanding
diagrams is not always as easy as it could be.
In many cases, embellishments capture more at-
tention than data [1]. In this paper, we present
EyeSee, a free diagram drawing engine that aims
to provide default values that produce uncluttered
diagrams. In particular, EyeSee focuses on a sim-
ple motto proposes by Tufte: Minimize chart-junk
and maximize data ink [2].

Furthermore, most diagram drawing tools are
concentrated on the user interface, and typically
they require input data in a certain format. With
EyeSee we address the researcher that builds the
analysis, and that is comfortable with his pro-
gramming environment. Thus, EyeSee does not
require the data to be passed in a fixed format, but
rather it allows the user to specify programatically

how to extract the data from the model he is using.
While on the one hand we strive to produce

clutter-free diagrams, on the other hand, we also
focused on the ability of the user to control all
the details of the presentation with as little effort
as possible. For this purpose we provide scripting
methods that allow for changing most of the prop-
erties of a diagram (e.g., the color of the elements,
the type of axis, the size).

Our prototype is built in VisualWorks Smalltalk
and works with Smalltalk domain models, but the
same approach can be applied to any program-
ming language.

2 EyeSee by example
In this section we show the basic facilities of

EyeSee using hands-on examples. As domain
model, we use a collection called contributors
containing the contributors to a certain project, as
obtained from a versioning system. Every con-
tributor has the attributes name, number of com-
mits, lines of code, team and versions.

We start with an very simple script that opens
a vertical bar diagram where each bar shows the
number of commits of the contributor. In the
script, numberOfCommits is a method in the Con-
tributor class:

diag := DiagramRenderer new.
(diag verticalBarDiagram)

y: #numberOfCommits;
models: contributors.

diag open

In the above diagram we cannot see which bar

1

is from which contributor, and we also do not
know the actual values of the bars. Thus, we want
to add axis and labels to the bars.

We accomplish this with 2 additional lines of
code. The new line regularAxis adds axis with
ticks and labels. In regular axis, the distance be-
tween two ticks is always the same. Instead, we
could also use valueAxis, which draws ticks de-
pendent on the values which get displayed in the
diagram. For putting a label below every bar, we
can use the identifier keyword, to tell the diagram,
how it can get the data for the labels. In our exam-
ple, we use the name of the contributor to identify
the bars (where name is a method in the Contrib-
utor class):

diag := DiagramRenderer new.
(diag verticalBarDiagram)

y: #numberOfCommits;
regularAxis;
identifier: #name;
models: contributors.

diag open

We might also want to encode other informa-
tion in our diagram. We have this possibility by
using colors or shades of gray for the bars. In our
example, knowing for each contributor the team
he belongs to, we also want to reveal this infor-
mation. Thus, we add one line to specifying that
we want a different color for each new team.

diag := DiagramRenderer new.
(diag verticalBarDiagram)

y: #numberOfCommits;
identifier: #name;
colors: #team;
regularAxis;
models: contributors.

diag open

By default, the values for the color get encoded
with gray scale colors. By adding the expres-

sion lightColors or strongColors, we can use a
set of ten strong or light Colors which are dis-
tinct enough so they can be easily separated [3].
However, custom colors can also be used for the
encoding, by using the useColors: message:

diag := DiagramRenderer new.
(diag verticalBarDiagram)

identifier: #name;
y: #numberOfCommits;
color: #team;
useColors: #(

 seaGreen
 limeGreen
 paleGreen)

width: 200;
height: 200;
regularAxis;
models: self model.

diag open

In the above example, not only did we specify
the colors we want to use, but we also specify the
width and height of the diagram. In our example,
as there is not enough space for the identifiers to
be displayed horizontally, they automatically get
rotated and are displayed vertically. Of course we
can also configure to have them rotated manually
by using the rotatedIdentifiers message.

3 Conclusion

The goal of EyeSee was to create a diagram
drawing engine that lets the user visualize his data
without forcing him to convert it into a fixed for-
mat. The provided default values produce clear
and clutterfree diagrams. 1 .

References

[1] S. Few. Show me the numbers: Designing Tables
and Graphs to Enlighten. Analytics Press, 2004.

[2] E. R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, 2nd edition, 2001.

[3] C. Ware. Information Visualization. Morgan
Kaufmann, 2000.

1The latest version of EyeSee can be ob-
tained on the Cincom Public Repository, see
http://smallwiki.unibe.ch/moose/tools/eyesee/ for more
details.

2

Figure 1. Several diagrams supported by EyeSee

3

