



# SqueakBot: a pedagogical platform for educational robotics

Julien Bourdon - Planète Sciences Séverin Lemaignan - Planète Sciences Serge Stinckwich - University of Caen, GREYC

- Planète Sciences
- Pedagogy
- SqueakBot
  - Electronic interfaces
  - Software
- Application examples

- Planète Sciences
- Pedagogy
- SqueakBot
  - Electronic interfaces
  - Software
- Application examples

#### Planète Sciences



- Since 1962, proposes scientific and technical activities to young people.
- Several sectors including a sector dedicated to robotics and IT.
- Each year, 50000 children discover scientific and technical culture by practice while having fun thanks to 1000 organizers and trainers.

- Planète Sciences
- Pedagogy
- SqueakBot
  - Electronic interfaces
  - Software
- Application examples

## What is a robot?



## Specificities for children (1)

- Fast learning curve.
  - No complicated language to learn.
- Must use their native language.
  - Interface in French.
- Must have FUN while making robots.

## Specificities for children (2)

- Usually do not have a technical background.
- Problem: building robots involve a lot of tedious electronics and programming added to sometimes not straightforward mechanics.
- Short period of time (2 weeks summer camp with 4 hours of science a day).

## Pedagogical robotics

- Build ready-to-use electronic modules which can be programmed easily.
- BUT must not restrain the creativity of children. Let the children experiment.
  We do not make them assemble kits.
- Several modules which could be interfaced with LOGO have been developed.

- Planète Sciences
- Pedagogy
- SqueakBot
  - Electronic interfaces
  - Software
- Application examples

## SqueakBot

- Drawbacks of LOGO:
  - Our version works only on Windows.
  - Necessity to learn a syntax.
  - OO approaches more natural to modelise robots.
- Open source Squeak/EToys approach developed in partnership with the University of Caen for several years.

- Planète Sciences
- Pedagogy
- SqueakBot
  - Electronic interfaces
  - Software
- Application examples

#### SMEC

- Super Module électronique de commande.
- Controls 1 or 2 DC motors + 5 binary inputs.
- Can be interconnected thanks to an I2C bus.



#### ASPIC

- Analogical & Servomotors by PIC.
- 4 analogical inputs.
- 4 servomotors.
- Connection via USB port.
- Can be connected to I2C bus.
- Card program can be modified.
- Remote control for debug.

# ASPIC



- Planète Sciences
- Pedagogy
- SqueakBot
  - Electronic interfaces
  - Software
- Application examples

# EToys



## **EToys**

- Programming by dragging & dropping tiles into scripts.
- Very intuitive. Accessible to children with no prior knowledge of programmation.
- Possibility to switch to Smalltalk syntax.



## Implementation

- Plugin written in C using FFI.
- Classes handling the I2C protocol.
- Classes representing the real devices.

- Planète Sciences
- Pedagogy
- SqueakBot
  - Electronic interfaces
  - Software
- Application examples

# Mars rover





# Walker



Caterpillar



# Video

## Intruder detector



### Intruder detector



#### Conclusion

- Allows children with no technical knowledge to develop robots.
- Fast results keep the motivation high.
- Tested in a summer camp.
- Part of a larger project called "Boîte à Bots" containing everything needed to build robots with children.

## Perspectives

- Make it work with Linux and Mac (problems with USB port handling).
- Test with a wider audience (e.g. at school)

# Why so much energy spent in such a project?



#### Links

- http://www.planete-sciences.org: the association website. (French)
- http://www.squeaksource.com/SqueakB ot.html: project source code.
- http://www.planetesciences.org/robot/boiteabots/: the bot box website. (French)