
Niall Ross nfr@bigwig.net

Confessions of a (not that) eXtreme Programmer leading a
teleworking team building a Meta-Programming and Meta-
Modelling Framework for Network & Service Management.

© Niall Ross, 2001
For use in XP training.
v2.0, 2Q01

Outline of Talk

The XP method
testing, refactoring and pair-programming

experience of each, how they combined
the role of architecture and design
pair programming experiment

The XP process
what we thought it was
our experience of it

Introducing XP to a team
Kent s advice - pure XP from day 1
Niall s practice - (comparatively) less strict

XP FAQs
handover (unverified)
scaling up (plan based on others experience)

The Cost of Being Wrong

Each fault costs
more to fix the
later you fix it

Make decisions
early; freeze
them early

time

effort

The Cost of Being Meta-Wrong

Software is not
hardware

Software is
malleable

The cost to fix
can be steady

time

effort

Experience of Test-before-Code (1)
The need for speed

the current test / the whole test suite runs in
10 seconds / 10 minutes: fine
5 minutes / 1 hour: stop and refactor

no time to redo test, must deliver WRONG!
Beware necessary but not sufficient

starting with a necessary test is essence of XP
complete the test set

partition axes (e.g. lifecycle stages, config types)
complete the assertions

two wrongs don t make a right ...
but may pass a failure-reliant test

general domain truths: put in generic classes ?
e.g. tp realizer connector == tp connector realizer

Write tests, not design docs or task lists
c

c

r r

Experience of Test-before-Code (2)
Test case pattern only implicit in paper

formalizing it helped achieve common style
combine test cases via inheritance and delegation

Needed flyweight pattern (SUnit 3.0 has this)

reuse/reset complex test configurations when
expensive to build or tear down
invariant or resettable under the tests

Evolve hard-to-compute test results (J. Pelrine)

chose initial config to test simple service
computed deltas to config for complex service

Testing the UI
some XP-complete projects only test 50% code
Kent says O.K. to skip UI tests (paraphrase)
mea culpa !!! (and it sometimes hurt)

Experience of Refactoring (1)
All coding is refactoring

theory: never write a line without a broken test
practice: after a while, we almost never did

The need for elbow room
deliveries inside increments kill refactoring

must break to remake
customer understood (enforced cycles on his team)

We ll push on you, you push back on us.
our new manager did not (survive :-)

Mustn t annoy them, let s do it this once.

What role for Architecture?
Refactoring demands fine-granularity

must be able to move behaviour incrementally
Barriers need architecture (or removal)

our ST-Corba-Java interface needed an architecture

Another Architecture Example

1) Low tax on refactoring;
use XP across boundary

Smalltalk C

Smalltalk/X IDE

Smalltalk C

Team A Team B

Site 1 Site 2

Team A

Site 1

ST-IDE C-IDE2) High tax on refactoring;
architect boundary

Experience of Refactoring (2)

What role for design?
XP says, Let the code teach you

pair-program sessions create design fragments
tests are primary, configure-controlled
models quickly sketched, useful in discussion

hard to reuse / refactor models due to poor tools
drawing tool: no understanding (bad)
modelling tool: wrong understanding (worse)

Documentation for new starters
most of our designs wrong / out-of-date

as XP says they will be
wrote some post-hoc designs

they were wrong / out-of-date too :-)
Design to find what tests to write

brief initial design helped a major refactor
impromptu sessions re non-code issues: helpful?

Notes for prior slide

(Slide not shown, only for notes.)

Experience of Pair-Programming
The hardest part of XP?

We don t have time to pair-program
you don t have time not to
pays back surprisingly quickly
a useful pacing mechanism

If only I hadn t so many meetings
stop meeting to talk and separating to work
start meeting to work and separating to think

Pair-compatibility issues
powerful when both are system-experienced
used as training mechanism; mixed results

Teleworking tool + handsfree phone ideal
better than sharing one mouse and keyboard
puts locals and teleworkers on even footing
collateral benefits: better split-site working

Notes for prior slide

(Slide not shown, only for notes.)

Experience of Combinations (1)

Refactoring and Pairing
let the code (and talking about it) teach you

discover a better design than you could deduce
example 1) object subClass: #class pattern

I built lightweight metaclass for special case
code told me, metaclass wants class behaviour
pair asked me, Why not do that everywhere?
suddenly we had a working system

example 2) model-or-user-driven pattern
I wanted model-driven algorithms

but couldn t solve every case
pair wanted user-driven, model-constrained

but couldn t make UI comprehensible
union was simplest thing that could work

and result was tool for finding better algorithms

Experience of Combinations (2)

Refactoring and Testing
basic XP: tests let you refactor

100%: refactor broke feature => feature lacked test
99%+: refactor broke feature, area lacked tests

Pairing and Testing
pair-programming a test defines a task

especially good for new starters
test lets pair agree understanding of task

Refactoring, Testing and Pairing
I several times experienced the sequence:

my refactor fails someone else s tests
my pair worked with them earlier, so explains code
pair fixes, fails refactor test; I fix, get better refactor

discuss, and so defeat, shy arrogance
I can t pair till I ve worked out how to do this task

Pair-Programming Experiment

Popularity
doubting start grew to 82% paired coding time

(industry: some always pair, some feel burnt-out)
(I browsed code alone, trying things out)

compatibility: rotate to ease clashes
2 x expert great, 2 x novice good, expert-novice OK
extrovert-extrovert slow !!! (but they liked it :-)
introvert-introvert good training for v. introverted

Effectiveness
paired code is of higher quality

pairs always write test cases
pairs take much the same effort

median: same effort, 50% elapsed time) due to 2
average: 115% effort, 58% elapsed time) outliers
pairs defeat parkinson s law and ratholes

Our Experience: Process
Discipline customers and managers with:

the planning game
customers always want everything yesterday
to get maximum value from technical synergy

customer maps stories to values
developer maps stories to iterations

iterative cycles
once upon a time we revectored every year
revector every month = process
revector anytime = no process

Need to coach customers and managers
XP doesn t say how; our best customer

already believed in iterative cycles
was idea-rich but time-poor
was erratic in pushing XP to his team

XP says, refuse the ones who won t learn

Interrupts: an eXtreme Solution :-)

Heads-up Week
queries welcome

Heads-down Week
go away; come back Aug 15

bay 5 bay 6

Introducing XP: what Kent says

Preach simple design
communicate in source code

no configure-controlled design docs
never duplicate logic

Enforce XP s rules on the team from day 1
if you don t need it, don t do it

no line of functional code written without broken test
pair program

no line of production code written unpaired
keep the feedback loop short

build system and run all test cases every day
work smarter not harder

concentrate work in middle of day
be exhausted by 16:00
40-hour maximum working week (popular :-)

Introducing XP: what Niall did (1)

Preached the theory: created champion(s)
talk (wanted workshop, summer school, ...)

Started with Testing
chose test utility

?Unit from www.XProgramming.com/software.htm
commercial testing tools that are XP-aware

for each team member, assigned starter task
champion pair programs test with them
lets them code task, running test often

gradually enforced rule
each task must have test(s)
all tests must be written paired or code-reviewed

once test suite built up, took time to
refactor tests for speed and common style
extend suite to a reasonably complete set

Introducing XP: what Niall did (2)

Next came Refactoring
made first major one visible (team discussion)

the need to refactor arose naturally
waited till test suite was large enough for safety

got bolder as our test suite grew
Grew into Pair Programming

started gently
thou shalt pair-program for 2 hours each week
thou shalt pair or review all tests
started by pairing equals

when team opinion leaders won over
upped weekly paired hours
rotated pairs

discussed, and so defeated, shy arrogance
I can t pair till I ve worked out how to do this task

Introducing XP: Up-front Costs

Up-front costs: technical
finding, loading, learning the test utility
getting used to test-failure-drives-coding

cost is IDE-dependent
some benefit in all IDEs

Up-front costs: non-technical
some customers / managers are keen

the creative engagement of combative intellects
let s pair-program tests to define use cases

some give the uncommitted yes
put heads-up / heads-down week on everything

some fight it
XP doesn t need those documents and meetings

those documents and meetings are what I m about
never give way, never give (avoidable) offence

FAQs (1): Handover ?

Can you sleep / handover an XP project?
I followed VCAPS model

wrote 10 page document with pointers to tests
seemed O.K. to me
wished I could reuse design discussion diagrams

our handover process is not yet verified
recipients were reassigned

Whether or no, should you worry about it?
XP s philosophy is about opportunity cost:

don t waste time preparing for unlikely events
you can refactor to handle them if they occur

(Almost) nothing that dies ever comes back
spend your time on useful features => no handover
handover ifTrue: [self writeBetterDocNowThanBefore]

FAQ (2): Scaling Up ?

Some say scale is an issue, others say not
Projects of 25 have used XP: the tools creak
I lack experience but have contacts

Scaled-up extreme s/w eng process (eCom)
three teams with parallel increments

Xanalysis: 2 relationship people model domain
Xreqts: 2 lawyers write OCL use cases
XP: 8 programmers do standard XP

each team s output feeds others next cycle
XP hate rate of business revectoring XA like
XA terrified by rate of system refactoring XP like

some programming styles collapse XR and XP
yes: Smalltalk, Prolog, Lisp,
no: C++, Java, ...

Extreme Programming

Thanks to my team (Gill Kendon, Steve Gaito, Jessica-Anne Hainey, Mike Hurd, Ian Corrie, Jonathan
Durrant, Juan Barbieri, Fiona Davison, Bruno Buzzi) and to Joseph Pelrine, Steve Forgey, Laurie
Williams, Stuart Kent and, of course, Kent Beck.

Acknowledgements

Backup slides

The Cost of Being Wrong

Each fault costs
more to fix the
later you fix it

Make decisions
early; freeze
them early

time

effort

The Cost of Being Meta-Wrong

Software is not
hardware

Software is
malleable

The cost to fix
can be steady

time

effort

The Key Ingredients

Write the tests, then the code
can t code what you don t know how to test
the test proves your function still works

next day, week, month, year
only write tests

that you know will fail, and/or
that capture domain knowledge

Let the code teach you
Learn how to do it as you do it
Code to learn

first make it run
then make it right
last make it fast

Frequent pair sessions
force you to learn, explain and justify
force you to share system knowledge

test

refactor
mercilessly

pair
program

The XP Process Philosophy

Give customers what they want
Delivered used software is where it s at

customers want code, not design documents
customers want features that add value

Building what turns out not to be wanted
costs effort and opportunity
when in doubt, just wait

An XP Story is the right, not obligation,
to build a feature at some future time

Used software never dies
successful software is simultaneously

in production, being evolved
in use, being maintained

(almost) nothing that dies comes back
and VCAP did, via XP

The XP Process

Story: some testable features
written by customer, estimated by designers
not what designers commit to

Iteration: ~ 4 weeks worth of stories
collectively, estimate iteration and list tasks
individually, sign-up for and estimate task

write test case for task
(re)write code till it passes test
either write another test or move to another task

customer reviews result between iterations
can t change story within iteration (can raise bugs)

Release: a set of iterations
that make business sense together

