
Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 1
Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004

I spent the preceding weekend with friends at Kirkland (north Seattle). The
weather was good (unusually so, I deduced, when the guide on the boat tour
we took spent much time assuring us that Seattle’s reputation for rain was
undeserved; but as I flew to Seattle from Glasgow, I can’t talk). The boat
halted in front of Bill Gates’ house for several minutes while the guide
described it in minute detail. I felt sorry for Bill; if you open your house to
visitors you can close the gates when you choose, but he has a beautiful
shore-front lawn - and boat trippers coming inshore to gawk at it when they
please. (Perhaps it’s a judgement on him for not using Smalltalk more.)

We visited the Space Tower on Tuesday night for an excellent meal, with
excellent views and excellent conversation. I learnt more from George
Bosworth about how .Net’s users and market affect how and when one can
get new features in, implementing them in the VM being usually the easiest
part. Jim Robertson and I then walked back to the hotel, setting the world’s
problems to rights on the way.

Style
In the text below, ‘I’ or ‘my’ refers to Niall Ross; speakers are referred to
by name or in the third person. A question asked in or after a talk is
prefaced by ‘Q.’ (occasionally I identify the questioner if it seems
relevant). A question not prefaced by ‘Q.’ is a rhetorical question asked by
the speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
This report was written by Niall Ross of eXtremeMetaProgrammers Ltd.
No view of any other project or organisation with which I am connected is
expressed or implied. It is as accurate as my speed of typing in talks and
my memory of them afterwards can make it; please send comments and
corrections to nfr@bigwig.net. I thank all speakers and participants whose
work gave me something to report, and the conference sponsors: Cincom,
Gemstone, Knowledge Systems Corporation, Mission Software, Why
Smalltalk, Reiling Consulting Corporation, IBM and Synchrony Systems.

Summary of Presentations
I have sorted the talks I attended into various categories:

• Web Development

• Applications and Experience Reports

• Frameworks

• Tools, Testing and Process

• How small can Smalltalk be?

after which I list Talks I Missed (those not summarised above), report on
STIC and Vendor BOFs, describe Other Discussions, note some Follow-up
Actions and give my overall Conclusions from the conference.

2 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
As there were often two and sometimes four parallel programme tracks,
plus ad-hoc discussions, I could not attend, still less report on, half of what
happened. (Some of the choices forced by the schedule were painful;
should I listen to Michael Lucas on withStyle or get a tutorial on Seaside
from Avi Bryant?) The talks’ slides should be reachable from the
conference website (http://www.smalltalksolutions.com/). For info on
talks I missed, and others’ take on some I caught, see Michael Lucas-
Smith’s blog, James Robertson’s blog and John McIntosh’ trip report:
wiki.cs.uiuc.edu/CampSmalltalk/Smalltalk+Solutions+2004+Trip+report.

Opening: Allen Davis of KSC and STIC, and Alan Knight of Cincom
Allen thanked the conference sponsors, STIC, Alan Knight and Jason
Jones. Alan remarked that it was good to see so many people here. He then
introduced the first keynote speaker, explaining that Avi is just this guy,
you know :-). Alan suggested Avi is an example of a general rule that the
best smalltalkers are Canadians, Maybe he has a point, I thought; in my
mind, I listed Canadian smalltalkers (perchance, list includes a certain Alan
Knight? :-). Remind me to ask the impressive Australian contingent at this
StS for their opinion (or remind me not to :-). A pleasant opening.

Exhibitors
In the past, Silvermark has shown me how to making Test Mentor support
driving very application-specific widgets. We discussed following up on
this. I also had useful discussions with the strong GemStone contingent.

Web Development
Keynote: Winning the Application Server Arms Race: Using
Smalltalk to Redefine Web Development, Avi Bryant
Web apps are really awkward things. They are used because they are
everywhere: you would not download individual clients to do all the things
you do via web apps. Applets failed not because Java was not everywhere
but because they were not the web. By the time applets came around, users
had a mental model about the web that included the back-button; browser-
based apps that were not web apps did not fit this model. A web app should
feel more like a website than an application. Java failed as applets but had
success on the server (message: server-side is a second chance).

Paul Graham sold an eCommerce store app, written in Lisp, to Yahoo for
$43m; it was (and is) a core Yahoo app. Why did he write it in Lisp?
“Because you can.” Web app users don’t care what it’s written in. Lisp ‘is
a weird dialect of Smalltalk’, i.e. it also has been around for a long time and
is much more productive than ordinary languages. Paul could fix a bug in
a running image while on the phone to someone reporting it;‘What bug?’

Why should the Smalltalk community be interested in Web development.
Because we can. On the client side, rivals have an unfair advantage:
Squeak looks funny. On the web, this does not matter so we can leverage
the fair advantage we have. If you think web apps are awkward to use, you
should try writing them!

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 3
Avi then talked about why web apps are hard to write and how Smalltalk
can help in ways other platforms can’t, creating a possible big win for us.
A web app is

• user types URL

• that sends request to webserver

• server responds with an HTML doc

• doc gets rendered in your browser (text, buttons, links, ...)

• user reads, then invokes some operation in browser

• that produces another request

and so on. Thus web apps are stateless; each click on link is like a separate
program. This is not like a typical client-server (e.g. VW client to
GemStone server).

This is fine for really simple things. However, any real web app must have
state. A typical eCommerce process might be

• get shipping address

• get billing address

• get payment info

• show confirmer

• get user acceptance

which builds up a lot of state. The traditional solution (many web apps use
this) is that state gets shuttled back and forth in each response via hidden
fields in forms. The billing request has the shipping address hidden on the
page, etc. For developers, this is nasty; you must marshal this all the time.
You spend much time parsing input, then do something very trivial, then
spend much time parsing output. It’s horribly tedious and can’t be
automated because each piece of state is different.

Global session state is a commonly-used bad half-solution to the above. A
session is created to last from the start of the user’s site interaction to the
end. Thus you assign a unique session id and every request and response
includes this session id. So you just send the new data and the session id
instead of all the data. Now, suppose you get near to booking a flight, then
use the back button to check something, spawn a new browser, then decide,
that after all you will book the original flight. The global state now has the
wrong session id and so the wrong data. (Generally, global state combined
with threading is always a problem due to race conditions, etc.)

WebObjects (written in Objective C which is Smalltalk-like), arranged that
each page instance within a session would have a unique id. That instance,
helped by the overall session, handles the response and returns the id for
the instance of the responded page. Thus if you backtrack, you get a fresh
instance of the page, with a fresh id: you do not get confused. You don’t
have to marshal your state back to the user because these instances are
creating themselves on the server and can use normal accessors to

4 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
communicate state between each other. This has problems but is a lot better
and is a smalltalky way for approaching the problem; you are interacting
with live objects, not marshalling state. (C.f. source code configuration
management in Java - what directory is this in, what files - versus Smalltalk
- my source is in this object.)

WebObjects does as much as you can do in ObjectiveC, or in Java (Apple
ported it to Java when they bought Next; see also WebTapestry, the only
other thing Avi knows that uses some of these ideas). However it does not
address coupling, the next huge problem. Many web developers envision
their site as a network in which this web page points to that one, which
points to that other one, and likewise for the objects pointing at each other
on the server. That’s fine if you have a really rigid setUp but it’s a problem
if you need to rearrange thinks and a huge problem for evolving your
system. One of Avi’s early clients wanted a box office system where the
main tasks had many similar steps - pick a show, pick a seat - but in
different orders - selling a seat and exchanging seats did not start from the
same place or go through the steps in the same order. The solution to this
problem is continuations.

“Seaside is to other smalltalk web toolkits as Smalltalk is to most other OO
languages; it’s as simple as that.”, Cees de Groot. This says it well. Seaside
is not (just :-) better but better in the same way that Smalltalk is better, by
using live objects not dead data.

Avi then started to build up the idea by refactoring a code example. When
programming e.g. an eCommerce web app with a shipping address page, a
billing address page, a payment details page and a confirmer, you could
allow someone creating the component for one page to pass in the next
component.

checkoutProcess
^ShippingAddress new next:
(BillingAddress new next:
(PaymentInfo new next:
(ConfirmationPage new)))

Suppose you pass a block instead of an instance; then you can add
conditional behaviour, and have the state as parameter.

checkoutProcess
^ShippingAddress new next:
[:ship | BillingAddress new next:
[:bill | PaymentInfo new next:
[:pay | ConfirmationPage new
shippingAddress: ship;
billingAddress: bill;
paymentInfo: pay;
yourself]]]

This puts all the state in one place and reordering is easy but it looks odd.
You are passing a block that tells you how you continue with the
application (thus the name ‘continuation’). You would prefer to put this
behaviour in methods:

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 5
checkoutProcess
ship := ShippingAddress new.
bill := self call: BillingAddress new.
pay := self call: PaymentInfo new.
self call: (ConfirmationPage new

shippingAddress: ship;
billingAddress: bill;
paymentInfo: pay;
yourself)

Avi demoed this code running, including use of the back button. That
rewinds up the method and forks off a new version that continues. Having
the back button work as users expect is essential; users use it all the time.
It works because call: makes a copy of the context stack. Avi demoed
cloning the browser and going forward and back on the two tracks.

Q. how do you ensure only one state is right, if necessary? Seaside has a
method isolate. A call of self isolate done e.g. after the user has
confirmed one purchase, invalidates the other stacks. Avi demoed getting
a ‘this page has expired’ by OKing one purchase after splitting the browser,
then trying to OK the rival fork, in a self isolate case.

Q. Forward button works? Yes; Avi discussed the various cases. In this
eCommerce demo, the forward button works before you submit and not
after, as you would expect.

Q. space for these continuations? You configure to expire continuations for
all but the ten most recent cases and that keeps footprint down. You are
trading space for ease of development. In 95%+ of webapps you will write,
it will be a good trade; maybe Yahoo would hesitate to use Seaside, but
mostly you just add another server (by definition, you must be being
successful to have the issue). Provided one user session is on one machine
(standard anyway for webapps), you can add servers easily.

It is great that you can write the whole process in one method. It is a happy
add-on that you get dynamic context across multiple requests and this helps
exception handling. You can put an error handler around a high-level
method, not around each request-response. Avi inserted an error and
demoed how the developer sees an error on the page, hits the debug link,
sees a debugger, fixes it, proceeds, and can still use the back button, etc.

Seaside lets you register objects as backtrackable so that this does not just
work for temporaries; any objects you want to be rolled back will be rolled
back (usually you use a stateholder wrapper for such objects). Session data
conflict is impossible by design. (Obviously, any multi-user app using e.g.
a shared database, must use distinct transactions, etc., and use standard
techniques to handle that.)

In Lisp, Scheme has continuations and Common Lisp does not; it is a major
at-the-VM-level choice. In Smalltalk, it is ten lines of code that you add.
Avi showed the code; stuff all the temps, program counter and etc. onto an
array. To restore, kill the current context, restore the saved one with all its
values, and swap the context’s sender, so you return to where the context

6 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
was captured (usually the self call: point). N.B. context termination does
not handle ensure: perfectly; in Seaside it is desirable not to have ensures
that go across multiple continuations (the interaction of continuation and
ensure is an unsolved problem and is the reason Common Lisp does not
have continuations, since it does have ensures).

The call: method stores the continuation and shows the component but
avoids returning normally so it instead returns when the next page invokes
the continuation. (Continuations hang onto compiled methods which hang
onto literals but nevertheless they can be serialised, so they can be sent to
another image to support the user from there if wanted.)

This is fine between pages; what about reuse within a page. Suppose a page
has two addresses (e.g. shipping and billing address, or old and new
address); we’d like to reuse two instances of that object on the page. The
problem in the old approach is that duplicates of two keys must not occur
so street must be street_1, street_2 and you’re back to marshalling
unnatural data. Seaside says, when you do this, don’t give the fields a
name, give them a block. The html is generated with the unique ids of these
block objects so when the request comes in you just marry it to its block
and execute. Avi showed Smalltalk code to programmatically create html.

employees do: [:each |
html anchorWithAction: [self showEmployee: each]]

At first glance, programmatically generating html breaks the standard
assumption that logic and presentation are supposed to be separated.
However CSS is the right way the web community should achieve this
separation; the Seaside approach is to generate very barebones html and
use CSS for doing all your design. Seaside took halos from Squeak. You
can toggle halos to show halos on all the elements of a page and you can
select and do all sorts of stuff, including edit the CSS (and a web designer
working with you can too). Avi demoed using this to convert multi-element
control from tabs to side-lists. The Zen Garden (David Shea, Vancouver) is
a site that shows how CSS can make the look change massively for the
same barebones html. Thus the developers generate barebones abstract
html, refactoring it to be productive, and the web designers then dress it
with CSS. Today, Seaside puts CSS in component #style methods so it gets
configure-controlled; Avi would like to progress to a CSS library.

Q. Suppose the alternatives are many; how do you handle that? You handle
that on the call-back side; your app becomes event-based. (There are
complex example applications people can study.)

Q.Porting? VW port is in Cincom current store. An old Dolphin version
exists. VA and Smalltalk/X cannot use it because the stack cannot be
copied. He does not know for other dialects.

Q. Documentation? There is not that much; attend the tutorial, watch the
(very-active) mailing list so if you understand enough to ask a question I’ll
answer. The online tutorial is good (but only takes you so far).

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 7
Rendering and Editing with CSS in Smalltalk, Michael Lucas-Smith
and Rowan Bunning
(Rowan motivated the withStyle work, then Michael described and
demoed it.) Avi has described a super server-side solution. They offer the
client-side companion to it. Web development has not moved on. One
reason is because we’re stuck with web browsers. For many web
developers, you want to escape from that. However we have not yet seen
convincing very usable XML solutions. Rowan has been looking for a
good XML editor for a long time and has found little better than tree
editors. However XML and web services are here.

We’re stuck with very poor scripting (try dealing with a 13,000 line
JavaScript app), Mozilla (bloated 20Mb downloads of 16,000,000 lines of
C++), poor standards (little change from 2001). The browser widget pallet
is poor, the interaction model is poor (tedious to iterate back and forth
because of that field you forgot to fill in). Web browsers feel like a step
back in evolution. “The web cripples usability.”, Forrester, 2000 (but his X-
internet proposal is years away from even being a prototype).

Flash-based UIs are flavour of the month, but ActionScript feels like
Javascript+VB; ugh!!. Java applets, ActiveX, Mozilla and IE behaviours
are all tedious. Their alternative is withStyle.

TwoFlower was an inspiration; showed it could be done. They want
withStyle to be more than a rendering engine for XML; they want it to
provide rich web applications with the same UI abilities you get in client-
server app GUIs; drag-drop, instant sorting and calculation, data
visualisation, etc. They aim to reinvent the browser paradigm, designed for
applications. (So their immediate focus is Enterprise Applications.)

(At this point they had the usual demo hiccough; their whole presentation
was being done in withStyle and a debugger popped up; they quickly fixed
things. Cause: Rowan as a Mac user found having two buttons on his
mouse challenging :-)

Michael started by showing ZenGarden (http://www.csszengarden.com.)
running inside withStyle. Being able to render ZenGarden pages is a great
challenge; they can render half of them at the moment. He explained that
withStyle is an XML renderer, not a browser. Browser is just one of its
many applications. He then introduced the demo. Styling XML with CSS
is only the start. They aim for Pollock integration, for XForms (Mozilla
people don’t want to do them because it needs them to know ‘too much’)
and for CSS-skinnable apps. CSS provides rules like, ‘I want this
information to be blue and always to the left of all else on the page.’ XML
is just information. They map XML into behaviour so they can do
something with it.

They have built apps: a Web Browser, an XML editor, etc. They offer a
developer program; you can sign the NDA and download the nightly build
plus all tests (and test current state). They have 600+ tests, 5,200 methods
and 35,000 lines of code, doing a long list of things (see slides).

8 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
Michael showed the web browser looking at www.wc3.org (front page
only; others are all old), their first benchmark since that’s where some of
these specs come from; he pointed out two small divergences from what the
page looks like in their own browser. Then he looked at ZenGarden; one of
the pages has changed in the last week and showed a debugger. He then
showed editing an XML document. The HTML knows what XML it comes
from so you edit through HTML to the underlying XML. He showed the
element-specific popup menus for editing the underlying XML, showing
XML-specific, non-html things. (You can also edit the HTML directly if
you wish.) WithStyle will plugin to IE and Mozilla.

He then demoed creating a slideshow. In the VW browser he added class
FOO, methods slide, slide1, slide2 (XML-aware editor), then went to
resource://Foo/slides as URL displayed in the browser. He then
refactored to share common elements, created a Slide class and gave it
behaviour (nextSlide, etc.) to attain the effect of a slideshow. The slides
were now objects. He put them in a namespace (so they were recognised as
URLs) and created a client FooClient class to be the root model object
holding the slides. This displayed the first slide when shown but clicking
had no effect. Michael added an XML event, tied to nextSlide.

<body.ev.type=”click” ev.handler=”clicked”>

Now when he clicked anywhere on a slide, it advanced to the next slide.

Right now, you can use this at the webpage level. Seaside is a good server-
side partner because Avi recommends simple HTML with rich CSS which
is just what withStyle does. At present, they use straight XML. A 3-tier
model (business logic server, serialise XML, client side withStyle) could
be done. Visit www.softwarewithstyle.com for downloads, etc.

Further Demo of withStyle at later session
(Missed first few minutes.) It has 3 layers of API:

• basic

• if you want to do your own widgets

• if you want to do your own view

There is some information overload in the web notes which cover all three
cases; to learn how to use withStyle, concentrate on the first style.

WithStyle can edit XML intelligently. It can see if it needs to split up the
DOM tree if you e.g. apply italic across parts of adjacent nodes. Menus are
built to let you edit a node at various levels, HTML, XML.

Q. MS word does not handle lists and nested lists properly; Windows loses
ends of lists. Can you do better? Glad you asked, I have example (demoed).
This is XML so you know where the list ends are. The engine is rendering
engine; widgets within let you edit things.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 9
You don’t have to re-render everything every time. Version 4 of the
rendering engine (which uses Pollock and is not yet released) is geared to
re-render only those parts of the layout that changed.

Their classes subclass Pollock classes. They were key pushers for the
double buffering and flicker elimination that Sames now does. Pollock
does various CSS-required things for borders, etc., so they will piggyback
from it. They use Pollock for the common UI functions of walking a
display tree but have their own scribe for e.g. selecting because they have
deeply-nested panes across which they select.

Michael threw some HTML into a workspace and added a Pollock list box
in it (just <pollock ListBox>). Pollock would use code to get the items;
they could provide the items as XML. CSS can then layout all these
elements of the page as they wish. (Pollock layout rules are just classic GUI
layout rules which have their place but they offer the chance to go beyond.)

Their XML editor is aimed at people who know what XML and CSS they
use and have clients who want WYSIWYG word-processor style editing.
They are not rivals for XMLspy and similar abstract XML tree-layout
editing tools.

Combining with Seaside

• Seaside: get request, reply with an entire page

• Seaside + withStyle: get request, reply part of page

The combination can give much better response.

WithStyle also gives the choice of handling view XML or model XML. Avi
is dubious about using model XML but it would allow fatter clients to then
handle model XML in some way. (Browser vendors are currently ignoring
the X-forms standard which advocates this approach.)

Avi: I do not see widespread internet, as opposed to intranet, adoption of
VW end-user clients (nor does Michael), but for the developers of internet-
targeted web apps to run withStyle makes perfect sense. Then Seaside can
put out extra info such as halos but better (e.g. right-click and see what
Seaside component it was rendered from). Michel demoed a simple ‘where
am I on the screen’ monitor, right-click to inspect Smalltalk object, etc.

Smalltalk, XML on the Web, Michael Lucas-Smith, Wizard
Information Services
Seven years ago, Wizard people met with a Java guy and an IBM Smalltalk
guy and chose Smalltalk. Today, they get visits from IBM people and Java
people who both tell them they should use Java, but they still use Smalltalk.
Their aim was to build a core framework to support their products; OO but
also pattern-oriented, emphasis on Naked Business Objects.

Their biggest success is Modis (Merged Audio/Visual Information System)
used by the Library of Congress, The Oscars, Bundesarchiv (Germany),
National Library of Norway and Screensound Australia who were their

10 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
first client. The system manages resources (e.g., ‘This is a 50 year old tape
so run it through acetate and do a cool check before you put it away or the
next person who views it will break it).

Meta*WizDom is a content management and Business Transaction
System. Their major customer is the Australian government. It manages 35
web sites, letting each site give the site-specifics look and feel to content
that is often general.

Meta*Grants is a government granting system that helps both the ACT and
Brisbane city council allocate grants with hopefully less waste than usual.

All Communities Online is an event-driven system that lets a group make
simple web pages to run its activities.

So Wizard has a strong and profitable commitment to smalltalk.

Some of these apps are already web-enabled. The rest want to be. This talk
is about how they can expose naked business objects via APIs. They simple
need to create, read, update, delete and search (much simpler than Avi’s
domain). Their solution is 3-tier.

• The back end data: DBs, XML, file systems

• the business logic: smalltalk apps talking XML / HTTP to a web
container (Apache Cocoon)

• the web container talks the XML / HTML to withStyle; it can also talk
to other web browsers (SOAP / HTTP) and may connect to other clients

They use XML because it is easy to understand though alas not efficient. It
is easy enough to read and debug if you are a developer. XSLT has one job,
to transform XML into another structure, and it is well supported by
Apache Cocoon and by withStyle. SOAP is XML with some tags, REST
an alternative that they also support. Apache Cocoon is the publishing
interface they use (the best piece of Java programming they’ve ever seen).
WithStyle can talk XML straight back to the server, a very nice feature.

They use TopLink today but will move to GLORP. They use TopLink’s
‘privately owned’ concept to decide what is serialised and what is taken
only as an href of type ‘resource’, to be linked back into the system.

XML schema is barely machine readable and does not map well to OO.
SOAP does not need it but XPath 2.0 does (and the industry thinks they
want it). Generate it and regenerate it; never, never write it. He uses
transformation rules and cardinality rules, called by exception handlers, to
deal with tricky cases.

Their server translates SOAP into Smalltalk using XSLT. It then executes
the Smalltalk and the result is cached. Cocoon gets XML from the server,
transforms it via XSLT and caches the result. It holds session info and only
validates user id and password via the server. Thus it is secure since people
must access through Cocoon.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 11
Michael demonstrated a VAST image linked to Apache Cocoon, logging
into a demo web app, calling up information and showing work-flow-
controlled page updating. Then he added simple behaviour (a ‘hello world’
popup) and showed the web browser triggering it the VA image.

A transformer turns XML into something else. A serialiser is the converse,
turning an object into XML. Actions give behaviour to objects (e.g. update,
refresh, save, cancel). Patterns define a configuration of transformer,
serialiser, actions, etc., so clients can hit the server with radically different
patterns of request. Rules allow you to find out what classes and instVars
are visible and so choose which configuration to get according to your
policy, e.g. policy might be to as much information as possible. These rules
are in a mixture of Smalltalk and XML syntax.

Q. What do you do to put your Smalltalk app on the web? Not much: XML
is generated for you, The XML transformer is in system for you. You can
use withStyle to transform the look, actions, whatever. Think of it as a web-
driven (GUI), command line (functionality) interface for your smalltalk
application based on business objects being the central point and messages
being sent to them. The responses are turned into XML and further
transformed as you direct and web-displayed.

Applications and Experience Reports
Replacing Oracle with GemStone/S: The Agony and the Ecstasy,
Joseph Bacanskas
Joe lives in Seattle. Typical weather for Seattle this time of year is rain; we
have been so lucky during this conference.

For the last three years, Joe has worked at Washington Mutual Bank on
their Smalltalk applications. WMB put their first Smalltalk application into
production in 1996. It was for a leading application, was very successful
and gave great competitive advantage to the bank, who decided Smalltalk
was a good thing. They then decided to build Visual Banker, which is now
in production and has 25,000 employees using it.

The bank had several non-Smalltalk applications that had good business
value but would not scale. Joe was hired (as a consultant; more than half
the bank including much of the management are consultants) to convert
these to Smalltalk applications that would scale. Joe’s app was a fraud
prevention case management workflow application with 200 users, with a
VisualAge Smalltalk front-end and an Oracle back-end. It went live in
1998/9 but had some problems. Users (WMB software development is
mostly funded directly by users) decided to replace Oracle with GemStone
because the cost of change of this system was too high, and the consultants
skill base needed to maintain it were expensive. That was the business case
for change; the technical case for change was that its maintainers could see
clearly that the existing application was very brittle and buggy.

The three amigos who built it had three ideas. The first one said, use
GemStone, but the bank would not then listen to him. The second was an
eXtreme Programmer who wrote tests and his stuff worked. However the

12 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
third handled the domain and, alas, he just knew that ‘domain objects
should not have behaviour’. Thus they had several layers of meta-domain
objects who had to know what to do for every domain object and every
combination of domain objects. This third chap also disliked named
instance variables because they were ‘not flexible enough’ so he provided
dictionaries for every object instead. Perhaps you are beginning to guess
why the system did not work well.

An additional contribution to the original system’s problems arose when,
late in development, it became plain that the connection network was too
old and ill-managed to handle the planned load so frantic moving of
behaviour from server to client occurred at the end of the cycle.

Joe told them that the one who said buy GemStone was right and a while
later they hired him and told him to do that. Joe moved the client to run on
GemBuilder, helped by a colleague who refactored it skilfully. There were
a number of challenges with the database, most due to legacy maintenance.

Change management had to be done such that changes also went to Oracle
as the legacy tracker. GemStone provides GemConnect to do this. However
GemStone provides two ways for change control, a verbose but very
controllable way or the meta-way, much less code to write but less easily
tailorable. The bank had UI standards which required that ‘list’ and ‘edit
details’ had to appear on the same UI page. Nothing gets committed from
that page till the user hits ‘Commit Case’ so the user can add transient
objects and delete them again; this made change control out to Oracle hard.

They killed huge numbers of stored Oracle procedures and reduced it to
two connections. Their design ensured that anyone can read from Oracle
but only GemStone could write to it (as it had to be as Oracle cannot update
GemStone). Kent Beck says, that most object systems have three objects.
That was true in their system: Case, Account and Customer summarises the
key roots of their domain hierarchy. They designed a set of searchable
collections based on these roots to handle access to domain objects.

They needed to get changes to the domain classes from GemStone to
Oracle; GemConnect allowed them to define five (meta)classes to handle
that. All the domain objects knew what tuples they would need to represent
themselves in Oracle.

They had a good team but did not have a common understanding of how
the application worked before, or of how to build application-to-GemStone
interactions, nor did everyone have deep understanding of how GemStone
worked. One guy would say ‘It doesn’t work that way? But it should work
that way!’ (I know how he felt but, as Joe said, one has to accept that it does
not work that way.)

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 13
The bulk loading process was an issue. The fastest loading time of 60
million Oracle rows was 4.5 days (on a 1 Gig connection) but the longest
available window was 3 days. His load had an oopHighWaterMark of
980,000; the limit is one million!!! 40 million of the 60 million rows were
history events. Then they had to build all the objects from the tuples!!!

First, they used massive parallelism on the load to get it down to nine
hours, plus they subsetted the data and allowed unarchiving data when
someone requested really old stuff. Once they got it into production (10
months ago) they had lots of problems. They had design choices with
subtle bugs (all to do with change notification, surprise, surprise :-). They
used reduced conflict classes, normally very good but you must know how
they work if you get clever with them. Joe peeked the RcQueue (he knew
what a queue was; that was the problem) that updated Oracle, then said
queue next but alas that might not be the one he peeked. This was very
hard to debug and was found by a GemStone novice, fortunately at a time
when Joe was on holiday or Joe would have talked the novice out of
believing what he actually saw.

There was a major bug in GemStone indexing (fixed in 6.1) that was hard
to work around.

That was the agony. The ecstasy is that now they can change behaviour on
hours, not months. An emergency fix can be applied in real-time without
client disruption (not quite so fast now because they were told if anything
else got changed without management’s change control procedures being
fully followed, someone would be fired, but it’s still a lot faster than
before). Background tasks (reports) can be done on the server in minutes
instead of degrading performance for hours. Business rule update used to
lock-up the updating client for a long time; now it is dropped in a queue
and is handled transparently. The 40,000 lines of code that used to handle
the O/R mapping are now replaced by circa 1000 lines.

The users are a lot happier. They just rolled out a release that went like
clockwork. They are moving lots of behaviour from clients to server which
speeds the client; anything that can be in GemStone will be in GemStone.
Lots of internal customers are now keen to see the system’s information.
They have been able to dispense with the full-time Oracle DBA.

Q. Why keep Oracle at all? We need to keep legacy data back for years,
plus the Oracle DB was set up to do some reports it would have been
tedious to redo.

John McIntosh did the reverse for an Atlanta-based client earlier this year,
moving an application’s database from GemStone to Oracle (change was
for management reasons; there was no technical problem with GemStone).

The OpenSkills Skillsbase Project, Bruce Badger
Bruce is a smalltalk developer and database specialist. He is also president
of OpenSkills, an international non-profit group looking at how to make
money out of open source software by selling skills based on it.

14 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
The SkillsBase is a global non-profit resource that allows the identified
members (identified via cross-signed keys) to promote their skills and be
searched by those needing those skills. Bruce does Java for food but uses
Smalltalk when he wants to deliver something that now handles 50
members in eight countries but wants to be able to grow, to survive being
mentioned on slashdot, etc.

Bruce uses squid to cache static data from their server (thus scalable to
massive hit rate) and to handle https and authentication. The backend is
GemStone which will run Swazoo (i.e running inside GemStone - no
external Apache or suchlike). Bruce joked about being the third speaker to
tell people to look at zen garden (it must be good) but he’s using XHTML
and CSS to serve up raw developer-ugly pages at the moment, highlighting
the key information. They serve HRXML as the external form of the
member information.

For development they used VisualWorks (Swazoo is already in VW; they
ported to GemStone). Analysing the problem was the major task. Building
the model and SUnit tests in VW was easy, leaning how to use Swazoo was
fairly easy, working out XHTML and CSS was hard, squid was easy with
help (from Rob Collins, a squid developer). Porting Swazoo to GemStone
was time consuming but would have been easy with the latest GBS release.

Bruce portability principles are not to change the system classes (I agree),
to delegate from them instead of subclassing them (I disagree) and to use
ANSI standard Smalltalk whenever there is a choice. Porting to GemStone
revealed that there are utility method missing, e.g. asReadStream must
be ReadStream on: (Q. why not add the missing utility methods extend
in separate category? Good idea). There are also behavioural differences.
‘Hello World’ asByteArray in VW prints ‘Hello World’ but in GS
prints ‘aByteArray’. Behaviour of aStream upToEnd differs (I’ve met
this one between VW and VA as well :-/). Etc. (see slides).

Bruce demoed completely from scratch, loading his system into a pure
startup VW image. Bruce uses a master bundle to capture all the version
dependencies. He started the system and showed a web browser querying
it, with bare-bones HTML (and fairly barebones CSS at the moment).
Login uses standard HTTP request, not cookies, which is not ideal (logout
by closing browser) but it is a standard. He then showed a hypothetical
member adding their data and adjusting their visibility (often you want to
tune your CV to the current job you’re pursuing but not throw away all the
other data).

Next he started up the GemStone version. The first line of the request is a
self abort, which means ‘teleport me to the current version of truth’ in
GemStone. GemStone preserves a read-consistent view of the database.
Any request can go to any Gem; no state is held in a Gem, state is held in
browser if needed (a very naive way of doing things but it works here.) The
request creates a task object that is passed to whoever helps deal with it.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 15
He inserted a breakpoint into GemStone and showed the URL failing to
return. (Usual demo hiccough here; browser got a socket to make a
connection, failed to get and now the socket is tied, must wait till expires.)

You can develop in the great VW development environment and then, with
a single command. update GemStone, rerun the GemStone tests and carry
on. The shared page cache mean that Gems are simultaneously very
scalable and very space efficient; individual Gems only hold objects that
have been changed.

Q. Why use GemStone? Because he could; non-profit organisation means
you can use non-commercial licences. Also it avoided tedium of
decomposition of complex objects into tables and rows.

Q. use VW XML parser? No; an OpenSkills person wrote one for interest
(ordinarily, Bruce would have reused VW’s but as an OpenSkills person
wanted the experience of writing one, he was happy to get him involved.)

TAPDance: a system for maintaining multiple versions of software,
Howard Ferch
Winnipeg is where they are based. They provide high-demand applications
to various clients including local fire and ambulance departments (which I
note would certainly motivate them to get it right :-). One of the systems
they are replacing has (amazingly) not had an outage in seven years, which
gives their users high standards.

In a dispatch centre, at 03:00, a 911 call wakes someone up. While they
wake with a start, bang into a filing cabinet and try to prevent their phone
set falling off, someone hysterical on the far end of the phone tries to tell
them something. This call centre staffer does not need UI problems. Hence
the tool aims to have a very simple and obvious UI, with unconfusable
widgets and very clear subpanes. Some country stations are manned by
long-serving staff who need UIs with no small fonts, have limited
computer experience, etc., so they have specific requirements.

Cellphone providers will be required to report location in the future but
today the dispatch centre does not even get a cellphone’s number, let alone
its location. Some address is entered and the tool has good matching
capabilities. In Winnipeg, they can show the location of any address on the
map. (Smalltalk is fast: VAST is very fast to draw the map in real time,
faster than the C program they replace).

The dispatcher application has four screens, which it must update in real-
time. One is a resource screen. Canada has very strong fire unions: if a
truck has not got full complement of people it cannot go to a fire, thus the
resource screen must show those trucks as red since they can only go to
medical emergencies. (I found myself thinking that while Canadian
Smalltalkers may be good, the country may have issues in other areas. :-)

16 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
Other screens handle map and incident data. In an urban environment, send
lots of resources to a fire since if it gets out of control it will spread quickly
and damagingly. In a country area, you send less and assume you’ll have
time to send more if needed. For regulatory reasons, they must use
unreliable lines (state says they must use a private-to-fire-service line, so
they use ISDN but supplier is not always able to maintain service).

Their goal was to avoid employing an expensive programmer to drag
windows onto canvasses, probably in an idiosyncratic and inconsistent
way. They have requirements analysts draw up the screens and then just get
those screens. The put the GUI description in a database and build it
dynamically when requested. They provide simple layout managers.

Howard showed various screens, which looked very readable and clear to
me despite being untouched by human hands as far as appearance and
layout was concerned. He showed various looks (including the one his
daughter liked best: lots of pinks and purples and hand-writing-like fonts).
He then contrasted the ambulance dispatcher look with the fire dispatcher
look, showing different widget sizes (there are more ambulance incidents
per unit time than there are fires, so needing different screen-space usage).

They assume that their database is relational and map to the forms via
meta-data, so again needing no programmer work on specific code.
Specific data has specific classes to manage it. TapDance runtime tracks all
users of database records in active windows and provides general redisplay.
They can override this in specific cases with a specific callback when
performance requires it.

Howard then demoed, raising a hazardous material fire call against his own
home and sending nine fire engines to help him. He clicked a button and it
updated; 55 database transactions were needed to do the update, notifying
all the stations, etc. His incident screen showed it being handled, his
resource screen was depleted of nine engines, etc.

He then started the same program but with different meta-data, showing a
resource duty roster application. Now they have, e.g. drag-drop abilities.
These are enabled here because it is very helpful to drag resources to
calendars. They were not enabled before because a just-woken dispatcher
is more likely to drag-drop by accident than intentionally.

A typical application might have e.g. 65 windows and 35 database tables.
They started by storing window definitions in the database but are now
moving to defining them in Smalltalk.

Why Smalltalk: if you want to build a meta-data system, Smalltalk beats
Java easily for ease and economy of programming it. They have one full-
time programmer, two part-time and a tester. They have also used some
coop students (speaker tends to see correlation between those students who
like Smalltalk and those who are good programmers, but OK, maybe he has
a slight bias :-). As another speaker mentioned, you spend time refactoring

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 17
after they’ve gone, so are the students cost effective? Hmm? They have
replaced 600,000 lines of C, 5000 lines of Java and 38,000 lines of VA
Smalltalk with 80,000 lines of VA Smalltalk in TAPDance.

3D CAD Framework for Smalltalk, A-S Koh
Askoh has been working on StCAD for over five years. In 1987, he worked
on Motion Simulation in dynamic simulator system ADAMS. After he lost
access to ADAMs, he tried various languages and in 1989 found Smalltalk.
In 1994, he built OODS plus AutoCAD, which impressed ADAMS so
much they bought it, replacing his simulator component with ADAMS. He
released freeCAD in 1999.

FreeCAD lets you define 3D assemblies of 3D parts (simple rigid solids)
connected by joints, constraints, dampers and special forces (e.g. position-
dependent forces). You draw parts, run simulations, and then interrogate re
what forces were exerted at specific locations, etc.

Askoh ran a demo of a steering joint example, with shock absorbers,
springs, dampers, etc. He ran the demo, zoomed and rotated, etc. He then
haloed the joints, selected one and called up plots of various behaviours (to
display data, it uses the VW business graphics object kit, to which he has
added zooming and other features).

An engineer who wants to explore an idea is the target audience. 80% of
engineering ideas can be explored here to determine their viability before
you buy some extremely expensive software for further analysis.

He showed how you would draw up an assembly. In a 3D view, he chose a
plane (XY) to constrain the initial drawing and then extruding it to the Z
dimension. He added various joints (circular, pin). All these joints are
effectively expressing mathematical constraints graphically. He added a
motion to that joint by customising a template, then set a step counter and
animated, then got results plot for the joint.

Next, he added a second part, a wheel, again by adding a circle in a plane
and extruding it. He assigned mass and suchlike details to it, applied some
markers to points on it and set up a pin joint from his first model trapped
inside the wheel. He resumed animation, to see how the wheel behaved,
then added gravity and showed how it now behaved, then plotted torque.

There is no collision detection at the moment; he is working on it since
engineering-wise it is useful. He would like to improve the UI (i.e. the
displaying UI; the user’s UI for driving it seemed fine to me, the displaying
UI fine for an engineer but of course nothing like a game rendering engine
or whatever).

A given state can be saved in a text form that is readable by a spreadsheet
(where you could change the data by hand or by formula and reimport). He
can also generate a POVray file for each step, letting you animate in
POVray. Separate motion, shape, etc., files let you replace shapes in
POVray yet keep the motion.

18 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
He then showed a 3-planetary orbit simulation, a JCB digger simulation, a
collision example (puck on seesaw, using coefficient of restitution to
determine collision behaviour.). He then showed an actual consulting job
he did of a barge at sea, affected by waves, placing an oil platform on its
supports using water ballast to raise and lower itself. Finally he showed a
few classic engineering examples, spring system, cantilever beam and
wobble pump air compressor (large example needed 15 parts and 20 joins).

StCAD is free for download on the web.

• The graphical code is basic and open source

• The geometric domain code is basic and open source. He is adding
OpenGL graphics (using some stuff from Jun) and showed us a
preview; better solids look.

• The numerical handling code is good and open source. He has well-
tested powerful matrix algebra and solvers, differential equation
solvers, and general Newton-Raphson. He also has a symbolic
mathematics parser and differentiation.

• The multi-body handling code is advanced, and not open source

StCAD has been used for advanced motion simulation and is ready for
solid modelling. Smalltalk made him very productive.

Q. Rendered by? Smalltalk graphics in everything I showed you (can use
POVray as described).

Q. Who downloads? People in Boeing, US Military, Nasa and similar, plus
many university downloads.

Q. Smalltalk is fast to code in; how fast is it to run? Fast enough for me.
Simulating a full car would no doubt be 100 times faster in an up-to-date
version of ADAMS than here but this is fine for real requirements.

Q. Visual Editing, e.g. select a part and resize? Yes but with a ‘do in 2D
then extrude to 3D’ style as this is using a 2D package he has expanded to
3D but not seamlessly in all its capabilities.

SmallBars - a bar code library for Smalltalk, Dan Antion
Dan had two wholly unrelated needs to produce bar codes, for a friend who
worked in retail and for his company. He did not want to mess with fonts.
The first time he did this as an extension to TotallyObjects’ Visibility
product, which worked adequately but it really made no sense to do it there,
so the second time he did it elsewhere. He never thought of issuing it as a
goodie but later saw people ask for barcodes on comp.lang.smalltalk.

The library was developed in VAST (complete and tested as far as a $99
bar code reader is a complete test) and ported to Dolphin (basic port,
untested - he’s just discovered he can read bar codes on a screen so maybe
he can test Dolphin without first writing a printer). It only handled linear
bar codes (no 2D barcodes yet) and is generic (no other libraries needed).

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 19
The library returns bar codes as DeviceIndependentBitMaps. The library is
free to use and port but do not publish the source and you cannot use it to
write a barcode printing utility (due to royalty issues).

He supports (in order of genericity) Universal Product Codes, European
Article Numbering, Numeric and Alpha-Numeric (this last was what
Nuclear Insurers needed). He demoed what ‘Smalltalk Solutions’ looked
like in all four of the alpha-numeric types (39, 93, extended 39, 128).

The barcode engine SsiAbstractBarCodeEngine does the basic drawing
and rendering. Its subclasses let you add footnotes and other stuff.
SsiAbstractBarCodeSymbology provides the ‘character’ table, interspace,
etc. You call standardCode39For: aString and suchlike methods to
create these, getting more detailed control via, e.g.

standardCode39For: aString dpi: aPoint height: hFloat
font: aFontString metric: aBool.

Dan has only tested printing to his laser printer and to his screen but not to
all devices and dpi’s between. The DIBM sometimes has trailing white
space, which he has fixed in UPC but not yet ported to all the others. He
will do refactoring as time goes by. He would like to do 2D bar codes but
the spec costs $1000 and his employers have not yet told him to do it. 1D
specs are on the web (N.B. but not all correct). If you want the library,
email him (antion@attglobal.net). He’ll email you a ‘conditions’ email and
when you accept that he’ll email you the library.

Q. Why Smalltalk? The data goes into VA, plus existing VA methods for
drawing rectangles and put encodings in dictionaries made it very easy to
do. (Had there been a logic to bar code initialisations, it might also have
been easier to implement that logic in Smalltalk, but in fact there was none,
except for one code that used straight binary; he had to hardcode it.)

Porting to Dolphin took him ten hours, mostly rewriting the rendering
piece which is different in Dolphin, and providing a few things not in
Dolphin. The original probably took three or four weeks.

Dan deserves a prize for making the innately less-than-gripping subject of
bar codes interesting, though his remark, “If you haven’t seen these, you’re
not living”, though literally true, overstates things implication-wise. :-)

Using SNMP for High-Performance Network Monitoring, Alex
Pikovsky, Quallaby
Alex got Cincom’s VW network clients project much the way Sames got
Pollock; he was asked what needed doing in VW and rashly said, “network
clients.” Later, Quallaby asked him to build a high-performance network
monitoring tool. The tool, Proviso, is a fat data pipe for collecting fault
management, provisioning and billing data. Their own installation collects
data from over 1 million managed objects, generating 100Gb of data files
every hour. The Oracle data load rate is 1 million records per minute.

20 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
It is a ridiculously complex system doing a few ridiculously simple things.
Why so complex: because of the vast configurability requirement. Data
comes in many formats, SNMP, BULK, SQL, CORBA, SOAP, etc. SNMP
is the most common. Each node has a Managed Information Base which
has a schema that is a simple rooted hierarchy of data items. To get an item,
you must supply the full hierarchic address. SNMP messages are very
simple (get/set request, get response, getNext for table enumeration, trap
for message initiated by managed object, e.g. an alarm).

Quallaby’s tools must support new network devices, applications and
metrics quickly. Their customers demand that it be very configurable.
Their customers are users, not programmers. Hence they need a scripting
language and are converging all those they use onto ECMAScript
(JavaScript standardised by ECMA).

Their Smalltalk ECMAScript engine (Smee) is in the Cincom Open
Repository. It uses the SmaCC parser and compiles to Smalltalk bytecodes.
There is VW debugger support and 300+ test cases. A Smalltalk object can
be exposed as a Smee object.

Their SNMP collector does network discovery. It find all the nodes by
various ad-hoc methods and then finds out which have SNMP agents. Next
it finds what managed objects (resources) there are on each agent, i.e. what
Virtual Private Networks, circuits, interfaces, etc. This network discovery
process can take hours to run. Then it does resource discovery for each
resource it found (done infrequently, takes much work). Data collection
runs every 5 - 15 minutes. It polls a very large number of resources (i.e.
rows in Managed Information Base) to find the current state of each.

They try to optimise collecting this vast amount of data. You want to
minimise network traffic. GetBulk usually looks best but if you are
searching for disabled devices sparsely spread through a table then using
an index to get the data is better. Users hated their old procedural language
for specifying what data to collect; they wanted to give users an easy
declarative way of saying what data they wanted, then compute the best
plan to retrieve data. This sounds very like relational algebra: declare what
data is wanted from various tables, then optimise the retrieval plan. Thus
they created Smee-SQL. There is tight integration of Smalltalk, Smee and
SQL. You can expose Smalltalk objects (e.g. statistics) to Smee-SQL.

They have to collect 15 formulae every 5 minutes against 50,000 resources.
The optimisation strategy is to build the whole query set of objects, then
start grouping. Almost every actual resource value is requested in more
than one query, often in many, and to marshal is a cost, so they pre-marshal
OIDs in requests and compare marshalled responses to not unmarshal.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 21
Smalltalk in an Autonomous Underwater Vehicle, Jon Hylands
Jon machines some of the hardware for this, not just the software. His
prototype is about the length of a forearm and consists of a PDA connected
to other electronics all in a tube with a propeller and some steerable fins.
The PDA runs Squeak and uses a standard RS232 to get data from and send
commands to the hardware.

An AUV has no physical tether; lots of people use tethers and it greatly
limits mobility. AUVs are used for scientific research, environmental
modelling, surveys, cable laying, military uses, etc.

These things are hard to build and operate. Mars Rover is inaccessible but
we can still talk to it. Radio stops working two feet underwater. Light is not
good as visibility is often limited and also unreliable. GPS, to see where
you are, is not available. The only thing that works is sound. However,
under water, an acoustic modem has a very low baud rate and is unreliable.
Acoustic modems are expensive (e.g. $20,000).

Underwater is a very nasty place to be. Water gets in everywhere. Salt
water is very corrosive. Pressure increases linearly with depth. Expense
increases faster than that with how deep you plan to go.

Bluefin Robotics (MIT spin-off) are one of the few companies that build
AUVs in the world. Theirs needs a 300-foot ship to support it because the
10-12 foot AUV weighs 3-4000lbs and you need a crane that can lift that
(so a large ship), plus repair facilities (and of course if you have a tethered
item as well you need a huge drum for the tether).

ISE in Vancouver is another company that makes very large cable-laying
AUV called Theseus (so called from the string Ariadne gave him in the
myth). Konsberg Simrad (Germany) also make a very expensive survey
AUV. Hydroid make a small configurable AUV (Remus). It can only go
down to 100 feet but it only costs $250,000, a tenth of what most of the
others cost; the navy like them and use them to remove mines (they use
dolphins as well but dolphins are not that predictable and they don’t scale;
ten dolphins are much harder to handle and need a lot of joint training).

MicroSeeker aims to be clever enough not to need an acoustic modem and
much cheaper. They did a pool test in Hamilton a fortnight ago (Jon
showed the video) to verify that it was waterproof and slightly positively
buoyant in the right orientation (which it was) and that it was fully self-
directing (which it wasn’t: will be when the motor generates sufficient
torque). He needs to use a gear motor to produce sufficient torque at the
right RPM. That requires battery changes and some electronics work.

The autonomous underwater vehicle is autonomous because it has
software, in 32Mb of Ram and 32 Mb of flash. The autonomous controller,
written in Squeak, decides where it goes and what it does. It has sets of
layered finite state machines.

• mission layer: PoolStraightLineTestMission is a simple time-based
mission

22 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
• navigation layer: this is a plugin; one changes navigators frequently
during a mission. Navigators are waypoint-oriented, time-based, etc.
navigators make decisions about how to get between waypoints,
whether a sensor is detecting a target (e.g. a pinging target).

• Sensor layer: Sensors tell speed (from a paddle-wheel), heading pitch
and roll (using a Honeywell compass), depth (water pressure; he plans
to upgrade this), bottom sonar (electronics for this but transducers still
TBD), leak detector (an aspirin; if it dissolves, we have a leak).

• Actuators, etc., can be bought from any hobby store.

He showed his simulator indicating the AUV’s behaviour in a scenario with
him adding some random behaviour (waves, etc.). Squeak was very good
for creating these visual simulators; attitude screen, map screen, etc.

This summer he hopes to fix the hardware issues and complete the
controller he is writing. Then he hopes to progress his next version of the
design, much influenced by what he has learned from this one. He plans to
move to an event and hierarchic mission controller design. He will need
$60,000 funding to build this next version.

Currently, all the AUV companies roll their own software, the usual
situation in a new field. He hopes to show better software.

Frameworks
Keynote: Smalltalk/V and .NET: A Comparison of Virtual Machines,
George Bosworth, Microsoft
George worked at Digitalk. Since then he’s been a refugee at Microsoft, but
will always be a Smalltalk fanatic whatever he is working on at the time.
He is one of dozens of architects who worked on the .Net Common
Language Runtime. These dozens of architects had a wide variety of and
past experience and viewpoint. George’s personal view is what follows.

(N.B. George often gets acronyms and code names wrong - as do I - and
the CLR has had lots of them: CLR, COM+, Project 42, Lightening, ...)

A commercial platform for languages and a commercial language toolset
are not the same. The CLR is the former, Smalltalk/V the latter. The former
enables divergence and differentiation: enabling that productively is the
former’s value proposition. The latter exploits uniformity by providing
specific patterns for doing things so users can get on with higher-level
thinking. Providing productive patterns is the latter’s value proposition.

Smalltalk/V was a VM plus libraries, components and tools. The CLR is
an execution engine, i.e. a VM. The VM provides a few more services than
Smalltalk/V offered all those years ago (e.g. security, interoperability) but
the main lists are very similar. The CLR also has base class libraries.

Unlike V, the CLR has CLS language interoperation rules and conventions.
You define a subset so that, while everything C++ can do cannot be
accessed for Eiffel, say, everything in the agreed subset can be exchanged.
The CLR also has piles of specs, unlike V. It does not have lots of tools,

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 23
because there are lots of other products from Microsoft and others
(VisualStudio and so on). Smalltalk/V tried to provide the tools out of the
box whereas the CLR aims to have that provided by others.

It is not that one approach is better. These are different things giving rise to
different views. The CLR builds things that run on it, so cares about
hosting, environment and deep interoperability. V built things that ran in it.
Some things, e.g. the garbage collector, differ for reasons of architects’
different ideas, but mainly they differ because of these different intentions.

The basic building blocks look very similar, how things are loaded, how we
track memory, how we produce executable code, how we provide services
(including security but that service gets its tendrils into many places and
must be thought about up front). There is more than one implementation of
the CLI from MS:

• Desktop/Server (VS.Net. LongHorn)

• Rotor (open-sourced version)

• Compact f/w (PDAs, phones)

• the watch (very compact, for e.g. MSN-Direct-enabled wristwatches)

These implementations are very different in how they are built, though they
share a few concepts, but they all are trying to implement the CLI and are
programmable from VisualStudio. The rest of this talk is mostly about
Desktop/Server.

The fundamental runtime control flow and execution model viewed
abstractly of course look very reminiscent of Smalltalk. They have various
JITs. D/S uses the standard JIT, Rotor uses econo JIT - because George
wrote it and it is easier to understand, though not as fast :-). PreJit code
generation is done at install time. Many think of these JITs as a compiler
but that viewpoint leads you to all the wrong conclusions

An Assembly is the unit by which code is packaged and loaded. They have
meta-data (the ‘manifest’). George defines metadata as everything that
isn’t the instructions; CLR has lots of it (twice as much metadata as code
in some files). Compiling captures versioning (I compiled this one today,
that one yesterday, aims to help tracking dependencies.) When you find
that a new version of an assembly does not work with one specific other
assembly, versioning aims to be able to track that.

Security permissions are held by assemblies; methods can demand proof
that permission is granted to the entire call chain (to enable, e.g. ‘run this
method from that one but only in context of this app’). Types are also
named relative to an assembly; assemblies act as namespaces.

The compiler resolves all this: resolves method overloading using
language-specific rules, adds casts needed, binds. It produces IL which can
bind physically but usually it binds logically to virtual slots and methods,
not direct offsets; this is much more resilient. The compiler emits meta-

24 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
data merged with the metadata it received and it emits IL code with meta-
data tokens in it which will be just-in-time resolved to laid-out Vtables, etc.
V usually bound more physically and invalidated on shape changes.

When a method is called for the first time, the code is JITted (and verified
if needed). The tricky part is deciding when to resolve, not how. If a
member ref appears, the type is loaded first, which will also load the classes
it inherits from, find the member, do security checks (JITter may insert
calls to security checks), and so eventually you call the code.

George then showed some slides to express this visually (“We have people
at MS who are very good at producing slides”). You generate a PE file with
header, tons of metadata, exception handling table, etc., and then send it to
checking tools (e.g. PEVerify, which tries to tells whether a PE file is well
formed, or NGEN) or to something that will actually run it (e.g. GAC, etc.).
The CLR is written to be hosted inside a user application so it has a policy
manager to apply policies to the code you would like to run. If permission
is granted, the class loader builds a Vtable and class info for the code,
which is then JITted and verified, thus reaching the state of being native
code plus a GC table.

A PreJIT is not (or not usefully) to be thought of as an MSIL-to-Native
Compiler. The PreJIT does pre-compile, pre-load and pre-layout that may
or may not be able to run on the host. You validate, and then run if you can
or revert to the normal pass. The PreJIT creates a special PE file (.exe or
.dll) associated back to the IL assembly. It works by pretending to be going
to run it (i.e. do PolicyManager stuff, JIT code) then caching it. Later you
load it and do verification checks and then either fix-up (‘not loaded at
address I thought so apply offsets’) or fail to fix-up (use normal pass).

The purpose of this is not to save JIT time (not a bottleneck) but to reduce
the number of pages you have to fetch, which is the killer for startup time
for apps. Thus very dense usage of the initial pages loaded, with whatever
they do not need able to be left till later, is a key value. Also, if 1000 people
login to a server and each start a CLR, that will be very slow unless most
of the CLR pages can be shared across processes. This PreJIT aims to make
it possible to identify truly shareable pages. This kind of thing is hard and
Smalltalk/V was not looking at cross-process page sharing (I note that
GemStone certainly has strategies for it today; other Smalltalks?)

Deployment models are a very big issue for MS since they do just
occasionally (!!! :-) patch and they also ship upgrades (which may be
dangerous as they cause use of product in new ways). Imagine getting a
Watson-dump where you just have native memory with no data on where
it comes from, what version, etc. Nirvana is not client-side generation of
optimised code when the scale gets large. If you ever go down that path in
Smalltalk think about that. George gets lots of Watson-dumps.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 25
An application domain is a subprocess that holds a type hierarchy, separate
from every other (logically separate; actually shares common types), where
assemblies are loaded. Transparent proxies (which you may think of as in
a global domain or in no domain as you wish) allow communication across
Application Domains while maintaining referential integrity of memory.

Suppose you use a window handle in a way that is ‘behaviour undefined’
but works, and then later an upgrade means it no longer works. MS would
try to say ‘the application is broken’ but some people (looking at Eliot :-)
never accept this (Eliot causes several, being more inventive than most).

Some things have to be resilient across time; get the latest version, please.
Some things are expected to be different across time; load the old stuff at
this ref with this app. The need to manage both cases creates the demand
for Application Domains.

Hosts want to apply policies. A server might not let you schedule threads.
If the thread has a problem, what do you do: terminate process, hang, ...;
the host’s policy decides. Out of memory: what is your handler allowed to
do? Can anyone ever allocate anything ever again? Policy is influenced by
how common the fault is. Some servers uses Out-Of-Memory as the way
to tune cache size: seeing more and more OOM, shrink cache; not seen one
for a while, grow cache. Others are much less casual about it. The CLR is
trying to live inside a range of hosts who have very different world views.

The two languages that had the biggest impact on CLR were VB and C++
(N.B. not C#, which is new and so tends to look at the CLR and surface
what the CLR has, not do its own thing). C++ had lots of existing stuff. In
general,

• Tools offer depth and inflict product churn.

• Libraries offer breadth and inflict versioning hell.

• Implementations offer guarantees and invariants, and inflict bug hell.

• Platforms offer real or de facto standards and inflict difficult-to-fix
bugs/features.

An example: C++ has consts, MSIL has no const. The issue was what does
const mean; an absolute guarantee or a usage convention that users can cast
away? The latter seemed to be C++ view. The CLR is very concerned about
absolute guarantees that always hold. Languages by contrast are concerned
about patterns that warn when you step outside but do not prevent you.

Another example: strings that are read-only / immutable / share by ref.

• Can I change the string from my program? No.

• Will its physical bits ever change? Probably yes; e.g. you might change
the locks on the object, or other tag bits. Some Unicode strings are
weird but most are not, so it can help to have a bit to say, ‘I’ve checked
this one and it’s not weird (so use the fast methods not the general
ones)’. This bit is not writable by the programmer but it is writable by
the underlying system.

26 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
So what was it that you wanted; programmer immutability or bit-identical
sharability.

Q. Differences between Rotor and D/S? Rotor lacks lots of the specialised
allocation helpers. The infrastructure for it is there so you could write any
you need. Rotor is close enough to D/S that MS often tells customers. Look
at Rotor, it will help you understand.

Q. Smalltalk’s in-memory stability of objects is one of its strengths; we can
get in there and look at them. This needs snapshotting of either an image or
of object graphs. How does the CLR feel about this? The CLR languages
do not today have a means of providing an external form of objects. They
will be looking at this and it could be made to work, better than people
think. However pure BOSS is brittle with respect to versioning so you must
provide conversion and so on. It can be done (Smalltalk/V could export a
BOSS file from 16 bit and load it into 32 bit, etc.). XAML is much less
powerful than Smalltalk representation but is easier to give to a non-
Smalltalk tool. The issue is the timeline: for how long and over how many
different cases must this file be reusable.

(Dave Simmons) The issue is that in CLR you have to (have framework to)
take responsibility for deciding what you serialize out and take back, unlike
Smalltalk which snapshotted everything, thus avoiding the question. It can
be done and the benefit is that you can merge two images. (Avi) It can be
done half-way through running a computation, e.g. with a debugger up?
(Dave) It could be done.

Q.(James Robertson), I fix my web app by testing locally, then just shove
parcels (with shape changes) to the server and load them. What can the
CLR do? In asp.net, it uses the statelessness of web apps to redo the page
without problems. The state is held in a state store and if you want to
change that you must handle it. (Jim) Change classes while running?
Change layouts of existing instances? ‘Edit and Continue’ is due to be built
to let you do some of that but it will be much less functional and robust than
Smalltalk.

Q.(Heeg) What must Smalltalk do to expand? Work with the CLR, to
leverage others’ work. CLR does not give you all you want, alas, to run on
it. (Eliot) Smalltalk is like this really successful pond scum that floats on
everything. (I assume Eliot was speaking of the notorious Canadian pond
weed, Elodea Canadiensis, perhaps confirming Alan’s suggestion of
successful things being Canadian - not the analogy I would have chosen. :-)

Q. What is missing from the CLR? The CLR does not have a tag type that
goes right through it and that the tool chain does not fall over on. The
anonymous reference stuff that is due to go in will help people implement
Smalltalk on the CLR. Intermediate late binding is what Smalltalk wants
and the CLR does not support that, but could.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 27
Q. Need to work with languages that do expect (interface) things that
Smalltalk does not? You can say what the set of fixed required things are
(Smalltalk requires that DNU be always there). One part we depend upon,
one part is dynamically looked for. For static CLR languages this pairing
is (all, nothing). By defining some new ways of resolving we can do this.

Q. CLR assumes that in extending you will always be supporting reference
types and value types; this has been a challenge for several languages and
especially Smalltalk? It should be possible to describe at the boundary what
the transformations are that you need. The same occurs in Python. If you
are happy that noone can call this function from outside your language, you
need do nothing, otherwise you must provide transformation meta-data.

Q. Do you need to make Smalltalk type-capable to be a first-class player in
CLR? You must make it type-aware at the boundary via some marshalling
approach (as has sometimes been done elsewhere in Smalltalk interop).
Going further is up to you; whatever you want people outside Smalltalk-
on-CLR to be able to call, you must marshal.

Q.(Eliot) Smalltalk/V knew the KISS principle whereas CLR has forgotten
it. Eliot feels that MS has made a hell of its own creation and must live in
that hell. If George had been at MS earlier, what would the CLR be like
today? Operating Systems that are widely used by many people give you
problems we could escape in ST/V. If you want to innovate, you don’t want
to be too successful. George almost was at MS earlier but he doubts that
would have changed the CLR. The watch and the compact are built quite
unlike the D/S. His Smalltalk-innovation hat says, “I’d like to get away
with a few tricks”, but his Watson-report-handling hat reminds him that
half of them arise from third-party device drivers; you have to think hard
about how users will abuse and misunderstand what you build. George is a
Smalltalk fanatic so there are things he feels bad about. He would have
loved to see an Smalltalk system on the CLR the day it was released but
that would have needed certain things to be there. The art of product release
lies in deciding what not to ship. Two-thirds of what George architected is
not yet in the CLR. If one of those thirds were in there, the CLR would not
yet have shipped. George believes that it was better that they shipped it.

The problems of adding things are illustrated by Generics (which are being
added now). It is not hard to add Generics in the core code but how do you
show a generic to a VB programmer. VisualStudio must have an answer to
that. Until it does, you can add it but not use it. If you add it, the developer
of the collection hierarchy is going to be very annoyed they cannot use it.

Introduction to State Replication Protocol (SRP), Paul Baumann
The choice between passing objects as binary or as XML is like the choice
between seeing objects in an inspector or as text. XML has high portability
of basic data types and can port higher-order types, but is inefficient in time
and even more in space; binary has the reverse advantages and drawbacks.
SRP seeks the best of both worlds.

28 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
SRP has been ported to Dolphin, GemStone, ObjectStudio, Smalltalk/X,
Squeak, VisualAge, VSE and VisualWorks. It works on all these dialects
from a single code base (held in Envy/VA, exported as parcels or whatever
else is used by the other dialects).

Everything in SRP is a stream of unsigned integers (can be represented as
ByteArrays or Strings). Simple parsing rules serialize and deserialise. SRP
is architected in layers, each calling the next

• PlbStateReplicationProtocol: basic behaviour layer

• SrpPortableObjectsportabilityLayer)

• InterfaceLayers: a configuration provides an ObjectStream (the stream
of objects to send). A Marshaller serializes and deserialises, using
whatever StreamEncoding is required (reverse bit order, base 64, ...)

The configuration allows great flexibility in setting mapping rules,
instantiation rules, etc. Convenience methods make it easy to control where
you save (to a file, to a stream), etc.

A portal is a global variable that holds a dialect-defining value. Messages
sent to it are dispatched to the dialect-specific method for that behaviour.
Each subclass of SrpPortableBehavior can apply to one or more dialects.
Their rules use a lot of respondsTo:, class name resolution, etc., to
determine which behaviours apply to an image (only during initialisation,
so the slowness is acceptable).

Paul launched a Dolphin image and showed a configuration that held some
simple data types, references to the class, etc. He then showed a complex
object (a method parse tree) for which he did not have the class defined in
his image. He showed us what it looked like as SRP binary data (!!!), and
how SRP handled loading its meta-state, the object that allowed us to load
it despite lacking some of the classes it needed. The meta-state provides
instvar names and default accessor behaviour so that, for example, a
message sent to the object that only needed simple accessor behaviour of
some missing class through which the message chain passed could work;
mainly however, the meta-state reconciles the object to its classes on the
two sides, and secondarily ensures the object can always be imported
regardless of the state of the classes it needs.

After loading and saving various objects in Dolphin, Paul launched VA. In
VA, the class absent from Dolphin was present so when he inspected the
SRP form of the object it could print itself more meaningfully (by using the
class’ behaviour instead of having to rely on the meta-state’s behaviour).

Paul’s complex object was a Visual Age method which was long and used
many datatypes. He dumped it as a text-encoded SRP and then in binary
and compared the sizes (binary smaller). By using a meta-state table he can
make it smaller still (no need to store meta-state with object) subject of
course to having sent (or synched) the meta-state table between sender and
receiver. Paul can use a general meta-state table or one customised to a
particular object. The latter gives the greatest size efficiency; objects save
in a very small footprint.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 29
In VW, #become: is fast but in VA it is slower, so Paul does not use
#become: in any dialect. Instead, SRP assigns a placeholder to indirect
references precisely at those points where become-like behaviour may be
needed later in the import of a complex object.

SRP has all the flexibility of Paul’s earlier deep copy framework (and of
course SRP can be used simply to deep copy). You can control serialisation
and deserialisation behaviour very easily at the instance, class or
inheritance level, map selected instVars to nil, etc. He used to have direct
saving of binary to streams but removed it as such objects were not
universally portable, conflicting with SRP’s philosophy. Now it is gone
SRP will always save objects with a behaviour that can reconstruct them.

There are many standard mappings, e.g

• (VA) EsString -> portable rep (SRP string) -> VW String

There are several ways to map a string; rules determine which is chosen
preferentially. Objects can have postLoadActions that, for example, can
use placeHolders to exchange objects.

Q. (Heeg) Applications? SRP has existed for 8 years. Some people have
told Paul they use it.

Q. Comparison to BOSS? BOSS writes directly to a stream, so if the
behaviour changes, you cannot load objects. Because BOSS loading uses
perform:, data could e.g. send System exit, creating a security hole. SRP
has no perform: so no uncontrolled execution of behaviour in import.
SRP is very space efficient and faster than some raw binaries, slower than
others. A object that is 10k in VA Swapper becomes 1.6 K in SRP and is
handled at about the same speed. VW is faster than SRP.

Q. What rules are available? Class based, inheritance based, instance-based
loading rules are all available. SRP version 3 also let you have class version
number storing.

SRP is open source. Paul handed out SRP3.0 CDs.

Visibility-based Report Framework, Bob Nemec
Bob works for a hedge-fund trading system in Toronto. Their application
has to handle a very large scale and must produce many reports. They
needed the ability to configure reports quickly. They also wanted good
diagnostic tools so if a report failed they would not have to start a full
development image for a minor issue. They knew that doing everything in
Smalltalk would give them access and flexibility. They decided to use their
tools on top of Visibility, a Totally Objects’ tool that lets you say, for
example, that you want character X in location Y in style Z. (Bob regretted
that David Pennington of Totally Objects was not able to be at this StS.)

30 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
They are not trying to be a rival to Crystal reports. The fundamental layout
of their reports is standard (header, body, footer, ...). A report is defined by
a spec that defines the logical data, its source (which database), etc., plus
the actual data and the output. The spec persists, the latter two are transient.

The individual report objects know how to build themselves on the page in
standard OO way. They also need a monitor object, a PagePackager, to
manage fitting them all on the page; the PagePackager recognises when an
object will have to take another page, reduce its size to fit, or whatever. The
overall report itself has a similar monitor. These produce the final output of
a collection of Visibility objects.

Bob showed a report with graphs of risks and returns, matrices, etc. They
can handle vertical growth (e.g. adding more rows) more dynamically than
horizontal growth (e.g. the number of columns at start of section).

Power users find it very fast to drive. Bob finds that if he returns to it after
six months he needs to warm up; thus he batches up report-specifying
tasks, since after he’s done the first, the rest go very quickly.

Reports are books that contain (logical) pages; pages can be reused in
books, books as chapters in other books, etc.

(At this point, some skilled fiddling with the projector sorted the colours
from ‘brutal’ purple; suddenly the reports looked really good !! :-).

You can configure the report to be really smart (e.g. to navigate the model
to get data) but if you do that (as they slightly did at first) you’re
programming in your report; Smalltalk is there for programming. Thus
they enabled each layer in the report to extract data from its components
using a transient builder. Smalltalk complexity can then be put into just
those sections that need it.

They use WindowBuilder widgets, which can be saved as bitmaps and then
used by Visibility. The data gathering can therefore be done elsewhere than
in the output phase which, since they use GemStone, means it can be done
on client or server, wherever is faster. They have an ImageManager (which
may be released as a goodie) to store their icons. The WindowBuilder GUI-
building capability has been wholly adequate; Bob is very happy with it.
He has also used it to build some configuration tools to set whether data
generation occurs on client or server, and apply rules to data (no. of colons
in method maps to no. of columns in report matrix, etc.)

Developers find this tool easy to use. End-users find it easier to ask
developers to configure another report than do it themselves, thus the tool,
though easy to use, is not end-user polished: “The effort to make something
look simple is great. A little teaching of users can be more cost effective.”
(It looked pretty usable to me.)

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 31
Diagnostics: if something looks wrong in the final printed report, they want
to see where along the path of creation it went wrong. The diagnostics
show this (as hierarchies, colour-coded for stage, to show how something
was constructed). This was very useful in development, but is little used
now as the system is stable and reliable. Another diagnostic is a trace tool
(who sent which method with what attributes). A third is a very verbose
output trace that lets you see the context for why, e.g. you are going on to
the next page unexpectedly; again, useful when developing the tool rather
than now. They can also open explorers and inspectors on the final object
in a report and drill down to what supplied it.

They think the 100% Smalltalk solution was useful, especially in
development for diagnostics and refactoring. Diagnosing why something
on a page is wrong when using external systems is horrible.

A sequence of students did the work with Bob refactoring the code between
each student, then briefing the next student on where the tool was and
where he wanted it to go.

Q. Size? They have 250,000 objects in their GemStone DB. Their hedge
fund manages hundreds of active and thousands of inactive funds.
Monthly, they take 6 minutes to generate a 200-page report. When it was
done in Excel and external tools, people would be working 18-hour days as
the monthly management meeting approached to pull the report together.
Some reports are generated every day. A great many reports are viewed on
line (every report can be viewed on line; this is doctrine).

Q. Any of this done on GemStone? Most is done on GemStone. (They have
default font style and size tags that are enough for almost all reports.)

Q. Printing? They print to PDF because occasionally other fonts look odd.
This is a known issue of VA assigning to printer fonts and/or screen fonts
so that occasionally a given pixel size goes ‘odd’. Their only issue with
PDF is that they would like to set the output file beforehand, not be
prompted during (PDF is just another device to Visibility). David is
providing this ability. (Someone mention PDFFactory which will do this.)

Q. Report-oriented or data oriented? We provide both; some users are used
to extracting a date-range from a larger report instead of selecting that date-
range when requesting a report.

Making relational data first class, Avi Bryant
(Missed this but got a summary later.) Avi has created classes for relational
algebra. You do your relational algebra work in Smalltalk, creating a
network of objects (instances of these classes), then transform via visitor
pattern and generate the SQL at last moment. You can pass a Smalltalk
object representing your query around so that one routine narrows the
search one way and another narrows it in another. You can defer your query
till the latest possible moment and manage its relation to places where its
result is wanted optimally. Avi sends a message accumulator into a block
(the old TopLink trick) so does selects in a Smalltalky way.

32 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
Pollock: Into The Breach, Sames Shuster
Sames explained that the title referred to a bullet being in the breach (i.e.
about to shoot, i.e. Pollock is about to be released) and was not a
Shakespearean reference (‘Once more into the breach, dear friends, or fill
the wall up with our English dead.’) as I had at first feared :-).

Pollock steals from VB, Delphi, Clipper, PowerBuilder, ObjectWindows,
and all the Smalltalk dialects: VW, VA, Dolphin, ST/X, VSE, etc. Sames
has invented nothing new in Pollock.

Sames’ recruitment included an interview by Glen Krasner (author of
‘Smalltalk: Bits of History, Words of Advice’) circa VW5i.1 time. Asked
what he would change, Sames said, “The GUI; it sucks.”, adding that MVC
was stupid. Then he realised Glen co-wrote the original MVC paper. A
week later, he was hired and leading the GUI rewrite project. He had no
prior experience of building GUI frameworks, but much of using them and
understanding them (he always likes to know things from top to bottom).

Pollock could be an extremely disruptive technology if you’re using
VisualWorks. The aim of the talk is to reassure users that it will not be so
disruptive and to make people aware of what disruption there will be.
Pollock will go into production circa third quarter this year and should be
out before end of year (but note that its release dates are disconnected from
the November VW7.3 CD printing). As of now, widgets, XML and literal
arrays, and code building frameworks are all done. Motif and MacOSX
looks were finished on 27th April. Supporting all the features of the current
framework is 80% done.

Needing a name to distinguish it from Pollock, Sames has christened the
current framework Wrapper, because it has so many.

Pollock has 13,992 unit tests with 300,000 assertions. (I meant to ask
Sames for a breakdown of these but was distracted. Many are standard
behaviour tests. Some are public framework class name tests; since users
will quote public framework classes in their code, the tests remind future
maintainers not to rename them casually. And some reflect Sames
philosophy of testing absolutely everything. It would be interesting to have
the rough ratios.)

What’s left?

• Some small stuff: matching Pollock behaviour for the last 20% of
Wrapper feature, plus the promise list (“Will Pollock do X?”; “Oh, of
course.”, Sames has said to (too?) many people at earlier StSs) and the
bugs.

• Some medium stuff: the API has evolved over the last two years of
coding and so some old widgets must be brought up to the final state.
Internationalisation support must be plugged into Pollock
(straightforward and not too long).

• Some big stuff, including the following

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 33
Sames wants to stop tab order being linked to the visual repaint order. In
Wrapper, tab and visual repaint are inverses (tab is front to back; paint is
back to front). Pollock makes them both front to back but still links them.

Smart invalidation, a.k.a flicker-free, is the most critical task. There will be
no flicker in Pollock at all!!! (Hooray from audience.) That means there
must be no direct graphic context writes. All must be done by invalidation
(people who write widgets in Pollock must respect the pattern or they could
reintroduce flicker). It also needs smarter clipping control. Wrapper
repaints all widgets (i.e. widgets just redisplay themselves when notified)
even if the repaint area does not intersect them. Pollock must invalidate so
that only widgets intersecting the invalidated area do any of the display
code, saving cycles (and flicker caused by delay effects).

Pollock will support multi-rectangle damage, unlike Wrapper which can
only specify a rectangle. Suppose a widget needing repainting has two
others in front of two corners. Redisplaying will flicker by repainting the
two corners which don’t need repainting. Pollock will repaint only the
subarea that does need it.

Q. support damage polygons, not just intersected rectangles? This is
scheduled for two-to-three years hence (the platforms support it now; it is
just a question of resources to implement using it).

Double buffering will not be on by default in Windows 98 / ME as resource
management on that platform has problems (you can turn it on if you want);
it will be default on everywhere else.

First production run will support Windows 9x/2k/XP/ME, MacOSX
Panther and Motif. It will have the framework only, no tools.

So what has it got that wrapper does not. Sames listed the ten values he saw,
in increasing order of importance:

• Automatic look change; you need provide no code

• Dynamic scrollbars

• XML or literal array specs, you choose your preference

• Global drag-drop to and from any widgets (e.g. you could drop a colour
onto a button).

• Uses only the event system; no change:* methods

• Better look emulation. He used the Motif and MacOSX Panther
standards. For MS products, he used magnifier programs to see just
where the pixels were (someone said there were standards for MS
online and provided webrefs).

• Easier widget extensibility. Last StS, Sames created a widget in an hour
and a half while talking.

• Consistent API: all the basic capabilities will be polymorphic across all
widgets.

34 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
• No wrappers!!!

• A future. Wrapper has no future. At production release 3, wrapper will
not even be in the image by default. It will load and run fine but it will
be all yours. We will look at bugs if you pay us and not otherwise.

Pollock will have 3 production releases, plus quality intermediate releases
will be dropped to the Cincom Open Repository and announced.

Pollock will have very configurable Grid widgets (per row, column, cell,
can put Grid inside of Grid, TreeView column, selection/edit-changed
views). Text will be much more powerful. All widgets will have powerful
API: no need for aspect adaptors. TabControl has optional tabs; someday
you will be thrilled by that. And much more (see the list on Sames’ slide).

Q. Drag-drop integration with native platforms? That is scheduled for the
Chagall project, TBD during next two years.

The production 2 release will provide conversion tools to convert wrapper
specs to (XML or Literal array as you wish) Pollock specs, and wrapper
menus to Pollock menus or toolbars as you wish. It will convert
ApplicationModel code to Pollock UserInterface code. The expectation is
that 80% of code will just auto-convert and run. Another 16% will need the
developer to choose a classifying pattern from a small list, after which it
will auto-convert and run. The remaining 4% will require manual
intervention. Production 2 will also have business graphics kit.

Chagall is the GUI project after Pollock. It plans to do native widgets,
including various expanded sets: GTK Gnome, QT (KDE), ... see slides.

After Chagall, the Peaches project will move the graphics engine and the
event loop out of the VM into the image.

Q. Command system for widget generation? Tools question; Pollock could
support it.

Q. Documentation? Documentation work is starting now. Production 1 will
have basic framework docs. Sames is writing ‘how to’ blog entries, which
he will roll into documentation.

Q. Is the event system like VSE’s? Yes: VA, VW and VSE share the same
code base for their event systems. However, Pollock will not have an event
returning a value, Travis having convinced him that this is a great evil.

Q. VisualWave will work and be supported? Sames gave a clear answer
which I think (mind momentarily on something else) was that existing
stable VisualWave will work as it will autoload the deprecated Wrapper
parcels and just go on working, but any development should start using the
new web framework toolkits.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 35
Q. Why the name ‘Pollock’? ParcPlace had project called ‘Van Gogh’ for
GUI (the idea presumably being that it would let you build GUIs as
powerful as his paintings). For the new GUI project, Sames wanted to build
a more modern abstraction, and there are few artists more modern and
abstract than Jackson Pollock (the fewer the better, say I :-).

The withStyle team have been working with Pollock and giving feedback.

Tools, Testing and Process
Opentalk, Load Balancing and Multi-Image SUnits, Leonard
Lutomski, Cincom
Load-balancing is a deceptively simple problem. Leonard has seen people
make horrible mistakes. He hopes he now know knows how to do it. He has
a multi-image SUnit facility. He also has a load balancing facility in
OpenTalk that he thinks shows a good pattern (but welcomes comment).

There are only 6 rational ways he knows of doing load balancing. (Anyone
know a seventh?) Configuration is part of the load balancing problem;
nothing gets done without it.

His demo showed multiple images running on one host, whereas usually
one looks at multiple images running on multiple hosts. However his
experience and theory is that OS time-slicing does not change the relative
efficiency of compared load-balancing strategies. His demo omits
examples of the balancer itself failing / fail-over (not enough time in 45
minutes; he had more slides than minutes as it was because he decided to
make a slidepack that was a good introduction to load balancing).

His demo has two kinds of request streams

• a stream with 60 17ms-to-service requests, then 60 173ms-to-service
requests, then 60 11709ms-to-service requests (all primes, he likes
primes)

• a stream guaranteed to frustrate round-robin balancers (or any
sequential distribution scheme)

Start-up and shutdown is complicated and takes time as much
configuration is going on.

He then ran the first scheme against a simple sequential strategy and the
graph showed a load balance we would like; servers fairly evenly loaded.
he measured the total time clients waited for requests to be serviced
(455secs), the total time to service requests (152.844secs), and the total
server-side wait. The last two measures indicate how efficient the strategy
is (the ratio is the real issue but for a given test set, the absolute numbers
are valid and magnify differences, making them easier to spot).

He then asked us to guess whether rival strategies random and least-loaded
would be better or worse than sequential, then ran them. Random was
worse, as you would expect, since it will sometimes put three requests on
the same server, creating back-up.

36 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
Least-loaded sounds like it should be better but is not, partly because the
data it gets about server loads is always out-of-date but mainly because the
data is refreshed at a periodic rate (with some variance) e.g. 20ms. If you
get 30 requests in that 20ms, they all go to the least loaded server. In short,
it is vulnerable to burstiness (request rate exceeds server-state refresh rate).

If you have a simple request stream you want a simple strategy. Cincom
had a customer who requested least loaded, which took much work, then
found they had to revert to round robin for just this reason.

Then he ran his ‘tough on sequential balancers’ stream with the sequential
balancer and it did not look good. Random looked much better, least-
loaded better still. He then ran a time-sequential strategy (ratio between
average request service length and time interval was 9:1) which was even
better. (Not much but the least-loaded run was particularly good. All this
was one run; in real life, he would run a dozen and discard two outliers.)
The diabolical request for time-sequential balancers is a very long request.

Random-least-loaded-half (randomly select server from less loaded half of
servers) usually does better on the tough stream than least-loaded but not
by much (and did worse in this run). Random-under-mean-line is similar
but randomly picks server from those loaded less than the mean.

Load-balancing is for synchronous connection-oriented protocols.
Asynchronous or multi-cast protocols, e.g. that used in the ISIS shipping
system, use a root game. Some routers implement load-balancing in
hardware; it is faster but less flexible than in software. Load balancing
minimises the time a client spends waiting in a sever’s request queue; it
cannot minimise anything else. It has a cost of its own: it takes time to
redirect requests, the servers and balancer must use the network to
communicate, the server image must take time to do administration tasks
for the balancer, and the balancer image must also run on some CPU.

The OpenTalk load-balancer is in VW7.3 in four parcels and is commented
(unlike much code Cincom puts out :-). It has all you need to implement
any of 6 basic load-balancing architectures. It has an API for configuration.
It has some multi-balancer support (you do not want your balancer to be a
single point of failure) which may be further developed. Time was short so
Leonard skipped many slides describing the OpenTalk L-B’s components.

The basic load-balancer architectures assume that all servers can handle a
given request in the same time. Do not use an architecture with sessions or
transactions in any case where you expect any maintenance of shared state.
He gave an example of an object reference routed by the load-balancer to
a lightly-loaded ORB but it is not the ORB that exported that object so the
lightly-loaded ORB will not be fast handling it.

He started to talk of architectures. Client code must not see whether load
balancing is present or absent, so it always references a wrapper object.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 37
In the ‘balancer always, no loads’ strategy, the wrapper always goes to the
balancer. The balancer has a static distribution policy (so no server
reporting of state). It is simple, fine-grained, cheap in messaging overhead
but costly in redirection overhead. It is not good for sessions or
transactions, but is good for a high average base request arrival time.

Time ran out. His slides list each of the 6 strategies, with its costs and
benefits, and its scenarios of use.

Pragmatic Enterprise Software Delivery, Angus MacArthur and Sean
Morrison
This talk is about problems they’ve had delivering software in a timely
manner, and processes that have helped them with that.

OTTP is the pension fund for all public teachers in Ontario (private
teachers must contribute to it by law). The development environment is
Smalltalk and Java. The Java is for some web developments. Their client-
server desktop app is written in VisualWorks. When the web came along,
the ease of refocusing Smalltalk meant the same Smalltalk code powered a
web app that lets plan members inspect and change their data. However
other web apps in the company are written in Java and WebSphere. Their
system has 173 packages, 2360 classes, 57,000 methods, 285,000 LoC.

Of 500 people in the company, 50 people are pension managers and they
all use the desktop application. Their users usually sit within a few hundred
feet of them. Their process is to gather requirements, then do SUnit test-
driven development. This SUnit-associated process is very quick. Next
they release to test which means moving between departments. If a tester
or customer reveals a problem, that takes longer to fix than if an SUnit test
reveals a problem.

The developers and QA use different tools. The QA people are business
people with some computer knowledge, not developers. They, like end
users, do not like seeing walk-backs. By contrast, a developer is happiest
when working with his computer, not with QA or customers. Bugs interfere
with ongoing work. A bug is usually a high-priority issue he must address.
So the less time it takes him to fix, to deploy patches to the floor, etc., the
more ongoing work he can do.

Whenever a problem is generated in testing or from the floor, there are logs
and forms and process to be done and that takes time. So they are
augmenting the tools that come with VisualWorks to help them do these
process things by building tools for testing, building and deployment.

Testing Tools: One testing tools is SUnit. They are not an XP shop as such
(yet) but they find it valuable and growing more so. They also have BRITE,
an in-house testing tool (a poor-man’s TestRunner). BRITE runs test at a
much higher level of granularity and, like SUnit, converts walk-backs to
failure reports. The testing group have 100,000 expected-result tuples
which their BRITE tests confirm (or not). BRITE is open source, in the
Cincom public repository and you are welcome to use it. It files into 5i4 but

38 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
will not work out of the box. It needs a database to store results and is tied
to their schema. It is also somewhat windows-specific. The licence is GPL
but is being made BSD. (It now runs in 7.2 in their environment so will be
released as such, and more schema-agnostic, soonish.)

Building and Deployment tools: originally they had a single deliverable of
a desktop client application in Envy. A build was a monolithic image file.
Change management was well-handled in Envy. Deployment was simple
but error-prone, since the process was to have a developer with instructions
on a scrap of paper load all the code and run scripts. When they deployed
a broken build to the testing team, that would halt their progress for a day.

Currently, things are more complex. They have a batch processing
framework that distributes tasks to machines and uses a server farm, a rack
of machines that hold Smalltalk images supporting websphere. The result
is that a build has at least one Smalltalk image plus web pages, .ini config
files, dlls and Java code. These files change as rapidly as the code itself.

They built two tools to help.

• Autobuilder: this is an extension to the runtime packager that scripts
the build assembly and then tests it to ensure you are not distributing a
broken build. A command line switch tells VW to use an XML file to
load specific bundles, packages, parcels, or by blessing level. Images
are saved according to a predefined script or by external .st file. Load
errors and warnings are logged and a build manifest created (they are
working on a hall of shame for undeclared variables on load, etc.). An
ANT script invokes the process. Typically it is run once or twice a day.

• Configuration server: this puts all the supporting files under version
management. The configuration server holds the files and serves them
to the build. Previously they broke many builds by deploying the wrong
set of .ini files (which are lists of key-value pairs). Now they use CVS-
controlled XML files (fewer namespace-collision problems plus allows
more complex data if needed). As websphere is now the department’s
standard for web development, the front end is websphere.

These tools were developed to meet their needs but may indicate more
common requirements. In their environment today, Smalltalk is one of
several players and so they must cross-reference across platforms.

Q. How do ANT and VW interact? Only by invoking a command line with
appropriate switch data. They used ANT because they had ANT scripts, but
they cannot call back to ANT. They write to a file which ANT then reads
to see if the build is OK. It works but they are looking for a better solution.

Q. Timing? The QA dept is very good at keeping them in line. As they
approach a release date, thinking they are feature-complete, they do twice-
daily builds and the QA department gets these builds, runs tests, checks
whether requirements are met and tells them what is missing or wrong.

Q. Where is the build info kept? In an XML file which specifies pundles
by version or by blessing level (e.g. latest released).

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 39
Q. Who writes your tests? QA group says, “Need to test this”. Developers
converts their objects into strings and numbers. They do many of their
‘what it should be’ calculations by hand. Occasionally, developers can
show that QA are wrong. They do not have an automated ‘smoketest’,
partly for time and partly because some tests do not back out cleanly so
automated running is not quite there yet though wanted.

Q.(Niall) A CM tool in Smalltalk, with external call ability, is better than
an external tool precisely because it allows such add-ons. Some pure
Smalltalk shops have created similar tools, except for the configuration
manager, which sounds like a good idea that should be used more widely.

Inside the VisualWorks Tools, Vassili Bykov, Cincom
My write up of Vassili’s talk ‘The Secret Life of Tools’ at last year’s ESUG
in Bled is relevant; it starts on page 19 of my ESUG 2003 report at:
http://wiki.eranova.si/esug/DOWNLOAD/nfrESUG2003reportPublic.pdf.

I missed this talk. One addition since Bled is that, while most of the talk
was done live in an image, as then, Vassili has added slides on how to use
Pragmas, which are on the website and worth looking at if you need help.

Building a 'Test-Friendly' Application, James Foster
I missed this but James kindly re-presented it for me later.

“WinRunner works first time and is reliable”, says Mercury Interactive; oh,
yeah!!!. WinRunner sits between windows and your app, capturing and
translating events. Playback must find the right window, widget, etc., to
work. Their GUI map tracks widgets ‘characteristics’. It is hard to identify
windows and widgets uniquely, especially when they are custom widgets.

The testers can only do so much towards making a tool like WinRunner
work; you must change things in your app to help the testers. Example
custom widget containing widgets. James added a button menu; testers
(and users if they wish) can use the menu to select the button and be sure
that WinRunner will find it. Likewise a tab menu can drive tabs. (Users
could want these if using VNC or whatever but his customer did not let him
release them as they’d have to redo the documentation.)

Now, the testers record a script and it won’t play back; they ask why? The
script usually looks weird in widget selection when examined, suggesting
they try using the menu to select. After a few such discoveries, testers
started to recognise patterns. Example; in a many row list, clicking the 40th
pixel down may well not get the same row as last time, so use ‘select 40th
row down. It’s not exactly the same thing but the actual press of a button is
almost always not what breaks.

Window labels can be non-unique and inconsistent. Mostly, we have the
label; how to make it consistent and unique? James adds a class name to
each label when in testing mode. Put a dot (.) in front of the non-latest
referenced windows of same class to hide them. Before this, WinRunner’s

40 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
pattern always found the first, i.,e. wrong, window. James’ pattern likewise
makes an assumption that could at some time prove wrong but it is usually
true and the testers using it know how it works.

Widget positions are fragile and their names are non-unique. However
Windows assigns a unique child identifier to all widgets so James just took
that in Smalltalk and make sure WinRunner uses it. Before that, e.g. every
widget had a help button and WinRunner was tending to select the wrong
widget’s button. James demoed a WinRunner script, made by point and
click, some of it using his menus.

To sum up, given that WinRunner has a fixed and inaccurate view of what
applications do, Smalltalk lets you tweak your application, either to fit
WinRunner’s expectations or to provide WinRunner with idiot-proof data.

Q. Why not TestMentor? TestMentor was less known than WinRunner and
(not quite as unreasonably) management had a desire for testing to be done
wholly outside of development, to avoid (probably unworthy) suspicions
of self assert: true. Lastly, VSE does not have a TestMentor port
(but SilverMark would have ported it for the WinRunner licence fee).

Squeak Tools, Colin Putney
Colin talked about the new generation of Squeak tools. The turning point
was at OOPSLA 2002 (just down the road) when Squeak Central turned
over Squeak maintenance to a new group. SqueakMap had just appeared.
Colin showed the SqueakMap packageLoader. PackageInfo is Squeak’s
packaging system. It was a quick and dirty way of starting packaging. Then
Ned, Avi and Colin started talking about how to manage development in
packages. The outcome was Monticello, which is unlike most packaging
systems. Monticello works on snapshots, so it does not watch you as you
work. You tell it you are ready to package (c.f. Store as against Envy).

Monticello is version-centric. It does not keep careful track of the history
of source code within a version. Thus it cannot show all prior versions of a
method (see below). However it can merge very well. If two version
streams have a common ancestor, you merge them by the union of one
merge parent with the difference between the other merge parent and their
common ancestor. The new version is the common ancestor of both parents
(the rest is reminiscent of Store but Store can only hold a single parent).

By the properties of Set addition and differencing, this operation is
commutative and transitive for merges without class-shape or method-
source conflicts. Obviously, if there are conflicts, you must resolve them
and that could break the commutativity and transitivity properties. It only
handles code but could handle any flat structure (Smalltalk is set of class
and method definitions, each of which either conflicts or not between
versions). There are a lot of tests for the merge tool. It seems to handle
cross-stream merges, repeated merges and multiple merges well.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 41
Monticello can use various repositories, XMTP or HTTP server, directory,
ftp site, GOODS database, or a SqueakMap cache or release (latter puts it
on Squeak Foundation). Any individual package can have versions spread
over lots of different repositories. That’s why you don’t get all prior
versions of a method; you get prior versions that are in packages you know
(and they could filter down to just the unique versions). You don’t need a
big central repository. Colin and Avi worked well for a time with only read
access to each others’ separate repositories.

(Usual demo hiccough; Colin had closed his image and reopened it but that
does not reinitialise the packages in the browser so he got DNUs when he
selected packages; he reinitialised.) Versions have UUID to distinguish
them from all others, and metadata that tracks prior versions, etc. You send
this data to end users so if they do any hacking in your package, you can
easily merge what they send you.

Monticello is an optimistic, distributed, quite unusual but quite pleasant-to-
use CM system. It is important to an open source community that people
can work well when disconnected (on planes, etc.), as suits them and merge
easily. Because repositories are so simple, you can start a project easily,
save versions on your hard drive, then later move versions to a more
general repository. You don’t have to create infrastructure up-front for what
may or may not later turn out to be a major project.

Then Colin described the new browser. When he started to rewrite the
browser, he spent two months beating his head against morphic and then
got on implementing functionality. Rewriting the browser will let many
things progress much faster. The RB in Squeak is bad because it has to
inherit from the browser. Namespace’s main issue was not breaking the
browser. Packages should be made visible in the browser. Colin showed his
OmniBrowser acting as a package browser.

Q. I can put this into the Star Browser? Yes. Colin would like to steal
classifications and other stuff from the Star Browser.

Then he showed a package-limited senders browser that let him see senders
of senders of senders in a given context (here the context was a package, a
particular kind of generic code context) to help him track down the
eventual sender of a message and so on.

Q. Duplicates Refactoring Browser Environments (RB always displays an
environment, which may be the whole image or a more limited code view)?
Yes, may need to refactor to reuse RB.

Then he showed the versions browser. The file browser is work in progress;
it is just the OmniBrowser retargeted to a different domain. It is currently
a viewer, will be developed to drag-drop files, etc.

Colin has tried to abstract all the commonality that browsers use into a
generic browser of a graph of nodes, which here is a tree of Smalltalk
source but need not be either a tree or Smalltalk source. Node classes wrap

42 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
the actuals (which may be dumb, e.g. a category is just a string) and know
how to handle them. A meta-graph describes how the browser should walk
the graph. Colin talked through the meta-graph for the file system, just the
ability to send directories and files to a directory node to return
other nodes. You can attach actions to nodes (e.g. add class category). Thus
you can extend the browser into a new domain with no UI work.

(There was discussion but I had to leave promptly so could not record it.)

Is Software Development in Developed Countries still affordable?,
Georg Heeg
I only caught the end of this. Georg’s answer was that yes it is and that the
current enthusiasm for outsourcing underestimates its associated costs and
risks. The middle section of Georg’s talk at last year’s ESUG in Bled is also
relevant; my write-up of his talk starts on page 8 of my ESUG 2003 report:
http://wiki.eranova.si/esug/DOWNLOAD/nfrESUG2003reportPublic.pdf.

Q. Statistics? Georg Heeg once competed with an Indian company for a
contract. Heeg sort of won (neither got contract, Heeg got two consultants,
India got none). He’s heard of single offshore projects that failed but not of
a proper study. Offshore staff cost one-quarter of onshore prime-site staff.

How small can Smalltalk be?
Smalltalk Mobilizes, Georg Heeg
Georg covered much of this in the last part of his talk at ESUG in Bled in
the second half of 2003. See my write-up of his talk on page 8 of my report:
http://wiki.eranova.si/esug/DOWNLOAD/nfrESUG2003reportPublic.pdf.

They will release this month. The mobile community is very keen on this.
Even Gartner had a hard time being negative. One of their consultants
wrote, “Smalltalk is the only technology that is the same on mobiles as on
standard machines”, which is a very positive point. Another Gartner
consultant (one we know will always slate Smalltalk) said, “It doesn’t
matter what Cincom does, the market will not go for it.”, which you could
take as meaning “I can’t actually find anything specific to gripe about.”

Squat: A Minimal yet Extensible Smalltalk System, Craig Latta
Craig wanted to free himself from the intermingledness of all the
subsystems you use to build Smalltalk systems, instead letting you choose
the components you need. Snapshotting is essential but needs to work with
much more fine-grained composability. He wants to simplify remote
collaboration and behaviour distribution, not always sending one huge
thing. Lastly he wants to enable portable embedded use in e.g. PDAs.

Craig started this in May 2002; Duane Maxwell, Tim Rowledge and Eric
Arseneau had these common goals. The first task was an installer (small C
program) for delivery of music and graphics. It was a tiny http program that
got a VM for you that would do the work, called Relief (how Craig feels
when Smalltalk starts up after which he can ignore all else on the platform).

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 43
He wanted people to visit a web page and have everything start up with no
need for user work. Issue: is this a tracing (declarative) or simulation
(imperative) problem? Do you already know what should be your minimal
snapshot? Or do you e.g. run a very minimal simulator that complains
whenever something is missing and you then put the bytes there and carry
on (crazy initial idea they had)? They ended with two Smalltalks, one
driving the target minimal VM.

Alejandro Rewimando’s group traced several small snapshots (e.g. start, do
3+4, exit) but extension is difficult. (And their documentation is in
Portuguese, which alas none of Craig’s group knew.)

Craig felt they should start with Dan Nichol’s 500k squeak image and strip.
He invented a framework Other (as in ‘self’ and ‘other’) for remote
message sending. Instances of Other forward messages sent to them, with
help from the VM (not using DNU) which also protects Other from
inheriting methods. This was easy to do; Craig showed the Slang (the
mappable-to-C subset of Smalltalk that the Squeak VM is written in). They
just added to the special objects table and did an extra comparison; the
overhead is very manageable. They also serialized to another live
Smalltalk system in real-time, which Craig noted as far easier than via
BOSS or similar files, because being able to say things in the right order is
simpler.

Craig stripped much of the browsers by putting them on the remote system,
driven by remote message sends. It was easier to do this by using the MVC
browsers instead of Squeak 3.2 Morphic browsers.

Craig demoed an MVC snapshot talking to a headless snapshot, another
MVC snapshot and an OpenAugment snapshot. using a Sorcerer server to
establish connections. The headless snapshot has an informant object
which the headful tells to do things. Craig launched a browser on the
headless system’s classes. The round-trip time was 1/4 second which can
doubtless be greatly reduced were it ever needed (it is good enough for
Craig’s purposes).

Q. Storing code? At first he did, following Dan’s approach, but he blew
away almost all the trailers at one point so you will see a lot of t1, t2, ...

Thus he can refactor without having any UI on the headless to get in his
way. He had to change 11 methods to make it work (but e.g. the browser’s
‘Find Class’ searches the local cache instead of asking the stripped image
to find, etc.; as this is stripping, not changing, that’s OK). The first thing he
did when reaching that point was to strip out the controller and so on.

Q.(Eliot) Where’s the compiler? Swapped out.

Next he did an activation marker. He found that much behaviour may be
used soon after startup but not at startup, e.g. the compiler. Each successful
method lookup sets a ‘run’ bit he has allocated. He regularly clears the
marks, runs a scenario, then swaps out what was not run, replacing them

44 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
with loader methods. Running a loader method swaps back in the original
method and runs it, all in-line. Thus he replaced thousands of methods with
12 loader methods; this reduced the stripped image from 300k to 200k. He
demoed compiling something and we watched how the compiler was
swapped back in. The Squat website has a few stats on this, but not much.

Q.(Eliot) Motivation? To reduce the initial startUp. System loads and then
distracts you (by supporting user interaction) while stuff it will need 60
seconds from now is quietly loaded.

Craig is now developing a module transfer system. To transfer behaviour
from one snapshot to another, the receiver creates a new empty module,
establishes a connection, and tells the source-holding snapshot the id of the
empty module and of the module it wants, so the source snapshot creates a
proxy for the empty module. The two modules then talk to each other
directly, so the proxy tells the empty how to get what it lacks (the receiver
may already have some of what the module contains though it does not
have the module, thus it may not want some things, etc.). During module
transfer, identifiers and names are distinct. Source transfer is optional.

Craig demoed this. The port and URL are embedded in the .exe filename.
The program started, distracted us with a progress indicator and then
opened a trivial app (showed the time).

This is currently being used in OpenAugment, Jon Hylands MicroSeeker
project, Jecel Assumpco’s NeoSmalltalk machine and Maurice Rabb’s
Microlingua. The idea of all these is to shrink to just the classes they need.
Craig demoed OpenAugment loading and leaving behind all the behaviour
it did not need.

The future: Squat is an internal name, so ugly they’ll have to change it.
Craig is thinking of Spoon. Visit http://netjam.org/squat for info (including
an answer to “Why Spoon?” :-). They will have to think about security
implications; how do you trust a module? Craig hopes that Squeak 4 (or
maybe Squeak 5, because Squeak 4 is changing the VM to 64bit) will help.

Craig thanked Tim Rowledge for conversations, and Dave Thomas and Jeff
Eastman for giving him real code to investigate.

Q. Thought about long-running systems? Craig wants to set up an IRC-like
system for serving modules, in which at all times the objects involved in
those modules would be live.

Keynote: Making Embedded Systems Serviceable, Lars Bak
Lars talk at ESUG2003 in Bled covered much of this and I wrote it up in
detail there. To avoid duplication, I concentrate mostly on new information
and additional insight below. I recommend that you read my summary of
Lars talk at Bled to get the whole of Lars’ presentation on this interesting
Smalltalk development; it starts on page 33 of my ESUG 2003 report at:
http://wiki.eranova.si/esug/DOWNLOAD/nfrESUG2003reportPublic.pdf.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 45
Serviceable means being able to fix the system if it fails in the field. One
of their venture capitalists had a $100,000 car whose software failed (lost
speedo, etc.) every fourteen days; he had to pull in and reboot the system.
He visited his dealer and said he had a problem, but that it was fixed when
he rebooted the system. “So where’s the problem?”, said the dealer.

Lars started in the Beta project, thence Self, thence StrongTalk, thence
HotSpot. He wanted to sell StrongTalk to Wall Street but that was just after
SUN told Wall Street not to waste any money on Smalltalk when Java was
where it was at, so one weekend they made the VM take Java bytecodes
and sold it to SUN as HotSpot, which has had 150 million downloads so
far. Meanwhile, Lars returned to Smalltalk in 2002 to produce Resilient.

Software in embedded systems today is done in a horrible way. Images are
dropped into the device plus debug versions with printf statements plus
gdb. Problem: the debug version may not fit on the system. The deployed
product has hardware device under RTOS kernel under C libraries under
your application(s). Once shipped, it is a block of stone that is hard to
change. It’s a slow development, low productivity environment with an
unsafe programming language (can’t be trusted to keep memory safe, etc.)

Gartner says that embedded software on devices will double every 2 years,
that the software costs of new car development is 35% of the total for some
manufacturers, and that in four years devices will be almost all wireless.
You can’t believe everything Gartner says but this Lars does believe.

The industry want to reduce the number of hardware components. They
really want to avoid product recalls, so really want dynamic software
downloads. Real-time is essential.

Lars worked in Java for a long time; it is not the solution. Java, like C, does
not support incremental execution. Serializing and restarting the processor
is not the way when the system must run all the time. The Java VM spec is
very complex; it is hard to be sure you have a correct implementation. Java
bytecodes are not designed for speed and compactness. Java configurations
are already too big and growing every version. Smallest Java embedded
config (CLDC) on Cellphone needs 1Mb ROM and 0.5 RAM to run Java.

So Lars prefers a dynamic programming language. Bang and Olufsen want
to use firewire for speaker cables but this needs computation within the
speakers. Lars put Resilient on top of the chip and it lets customers connect
to B&O and get online diagnostic and fix in a pilot project, which is better
than telling the customer, “Take speaker back to store and we’ll look at it.”

Cellphones want to push out minimal size updates while the software is
running (obviously, as you must use the phone connection to get update).
Another use is an embedded program in e.g. a wind farm windmill, being
debugged by the remote system e.g. by snapshot taken back to lab and carry
on executing to study. Small method updates can be done by SMS. One
seller of home entertainment systems (using C today) needs an open secure
platform to make their kit work with others’ kit; for this, Resilient is ideal.

46 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
Resilient is an embedded platform and an IDE. When running hosted, it
interfaces to host services. When embedded, it can e.g. provide its own
TCP/IP implementation to a network card. They use a single heap because
memory-constrained systems cannot afford boundaries with space on one
side, crowding on the other. The IDE is based on Eclipse.

Unlike Craig’s work, the embedded image has all that it needs to run
unconnected (they compute the closure). Their technology preview GC is
a standard mark-and-sweep collector. They are rolling out a new one.

You download VM (needs 32k) then classes as needed. It is a dynamic
language so you can update device drivers while program is running. For
one cellphone, they used so little space that they threw in a webserver.

The VM on the device has a simple reflective interface to which the IDE
talks. Provided you don’t need on-the-fly code-generation in the embedded
system, this is a good model. The IDE was at first implemented in ST/X
with a webserver front end but the webserver was hard to progress (let’s
add this - some Java script, let’s add that, - some XML - suddenly you had
to run in NetScape version ...) so they moved to Eclipse with their plugin.

They reduced the Smalltalk bytecode set to 20 in a more uniform format.
This made correctness-proving much simpler, and left them 236 codes to
play with for optimisations. They create a byte-code-pair histogram, and
use the other 235 bytecodes to do common pairs of bytecode; this saves
speed and space. Currently, they use 35 more bytecodes for these pairs.
They have an optimised interpreter and inline caching. 10% space is saved
by having methods that share implementation share bytecodes.

They also unified resource management; Lars was fed up with how hard it
was to handle running out of memory in Java. The VM also has control
primitives to transfer control between the scheduler (written in Smalltalk,
customisable) and other threads. Stacks are 512 bytes and grow as needed.

The language is Smalltalk with a few tweaks. They have full syntax for
classes (inspired by self) because the customers (all C coders) are so used
to files and full syntax lets them go on using vi and CVS if they want to
(see slides for examples). Lars asked for comments; using = to separate
method names and bodies was queried, as that could look odd when the =
method was itself defined (maybe use something Smalltalk does not).

They added atomic test and store; crucial for synchronisation semantics,
written as ?:= as in owner ? nil := Scheduler current (if owner
is nil get the current scheduler and assign it to owner). See my write-up of
Lars ESUG2003 talk for a discussion of why this is essential, and of why
they do right-to-left evaluation (user sees normal behaviour). They have no
pool variables (I approve) or class instance variables (I regret this).

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 47
They added namespaces (any class can be a namespace) and typed LIFO
blocks. Block activations can only exist on the stack. Blocks are a
challenge to allocation, which you cannot solve by standard Smalltalk
ways in 32k. It gives them a factor 5 speed up for some benchmarks.

(Avi) Ruby does something similar with blocks but can convert to heap
block; could Resilient? We could do that but prefer to keep the VM small.

As there is no reflective behaviour in the embedded environment, just the
reflective interface to the IDE, only the programming environment can
create classes and there is no perform:. Reflecting class shape changes
to their existing instances will be fully supported in the shipped product.

They have a minimal basic class hierarchy. Writing device drivers on a 32
bit computer requires 32 bit arithmetic so their LargeInteger is only 32 bits.
(However true LargeIntegers, e.g. for encryption, can be implemented.).

They have a device driver API, an abstraction in the VM. You get a pointer
to the beginning and range of the device’ memory range; system protects
you from writing out of range.

Visit www.oovm.com. The final 1.0 version is scheduled for late summer;
it will be free to evaluate and will cost to use. OOVM is looking for
commercial projects. Contact Lars at info@oovm.com with any ideas.

Lars then demoed. IDE had class hierarchy pane, source code pane, and
outline pane that showed what was being sent via the reflective interface to
the embedded device connection, i.e. what it was doing. Lars connected to
his device. Some classes turn blue (already on device) others grey (not on
device; would be downloaded whenever needed). Lars connected up a
display, executed some code and made the display show stuff, updating
code on the device to do so. He then made a slew of associated font changes
and then uploaded them; the display font changed. (Important to be able to
manage batching up your uploads to the device so as to upload consistent
sets of code.) He showed the debugger (which is being further developed).

Q. When uploading, how do you handle when old methods are still on
stack? They keep old methods around for old activations (AI conversion of
old method to new is unsolved problem :-). When activations for an old
method are done, the method is GCed like any other unreferenced object.

Q. Exceptions? But of course. He scrolled back in the stack to a throw. You
can throw to any object; currently their pattern is to throw to symbols.

Q. Port to PalmOS? We’re focused on small devices, so not sure if PalmOS
is a market for us.

Q. Security? First version will not have security and will aim at markets
where you have good grounds to think your connection is secure. They will
use an existing secure connection system (he can do this in 100 bytes).

48 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
The VM itself will not be open-sourced (we keep the crown jewels) but you
can have the hardware abstraction layer and can implement that on your
device, after which Resilient will run on that device with nothing more
needed doing. A wiki exists; by all means read and comment.

Q. You traded expressiveness for performance? Yes to a degree, but Lars
actually likes LIFO blocks.

Q. Why switch to Eclipse? We liked Smalltalk/X but our target audience of
C programmers know Visual C as their favourite environment. Eclipse
looked like what they knew and so helped early uptake. (Lars remarked that
he had found Eclipse’ other language support was not too clear.)

Q.(Travis) We can easily write a VW, Dolphin or whatever UI. Travis
looked during the talk and all you need is there.

Q. Emulation support? No plans. Most of the code is platform independent,
which would help.

Finally, Lars dropped the device on the floor while trying to untangle his
wires but it still worked; “It’s resilient.” :-)

Microlingua, Maurice Rabb
Rabb does work for Katylystic, LLC Chicago, and Stono on display
products for watches, etc. He wanted to do this work in a language that
would be easy to use, have expressive concurrency and polymorphic
argument dispatch, plus all the obvious embedded real-time needs, and be
small and fast. He’s moved Microlingua back into Squeak.

He demoed animated watch numbers. DynaGlyph and FoldingGlyphs offer
a fun new medium for watch designers to play with.

When he started, he was frustrated by number immediacy and immutability
issues. He found it absurd to have to use value holders to hold small
integers when the latter just needed to be mutable. Other goals were:

• things said frequently should be easy to say

• important things should be easy to say correctly

He wanted fast fixed-size integers but he did not want to violate how one
thinks of numbers in Smalltalk generally. He therefore created new
notation (~ same precision, ! immutable, ‘ mutable, # unique) which he
used to define additional number-handling operators

• ~+, ~&, ~<< and so on all return an object of the same type and
precision as the receiver

• ‘+, ‘&, and so on copy if necessary (i.e. original was immutable)
otherwise overwrite original (numbers are immutable by default)

leading to code such as

a := ‘123.
b := a.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 49
a ‘+ 12.

after which a = ‘135 and b = ‘135. This gives equality behaviour which
matches Smalltalk’s.

He found he sometimes needed to see unreduced fractions e.g. to see 5/15
in source code even though 1/3 in compiled code. His ExactDecimals are
not FixedPrecision as they are fractions, not floats; this is all about display.
Thus

(3/15) + (2/15) == !5/15

The exact rationals ensure that WYSIWYG; you never accidentally get a
false equality between non-equally-precise numbers.

Floats are inexact numbers; they cost performance and memory. He
displays inexact numbers with half of their precision plus ~ to ensure he is
always aware when a number is inexact. His ~ comparison operator
compares inexacts as equal if they are equal to half their total precision.

Rabb feels that over-focus on self prevents you from thinking of methods
as generic functions to which all arguments are equal. He thinks this
inhibits better read/write and concurrency models. Thus he has eliminated
self and provides implicit accessors for all instvars.

Alan Kay: “The selector space is Smalltalk’s most precious resource”. He
feels that the methods at: and at:put: have poor names (should be
valueAtKey:, atKey:putValue:) and improperly low precedence. To
his #, !, ‘, ~ notation he has added @ for key, % for value. Except for
bounding symbols [()]{}, any characters typed together are evaluated as
one token, so that 2/3 + 4/5 works as expected. He adds a :: to handle the
issue that, as there is no assignment operator (message used instead), you
will end up needing more parentheses. The idea is that as keywords are
lower precedence, adding a colon reduces the precedence of any operator;
thus

newPoint:: Point x: 2 y: 5

instead of

newPoint: (Point x: 2 y: 5)

‘ can also be used to reduce precedence.

There are hundreds of millions of cell phones in use. People are searching
for killer applications. They plan a contest with cash prizes for the best cell-
phone based DynaGlyph.

Q. (me, Avi, Lars and others) KISS: why have two ways to do the same
thing? Rabb: I dislike brackets. Us: yes, but Smalltalk’s simplicity is a great
value; concentrate on what there is business case for. Rabb: the new
notation is the thing I will argue for least.

50 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
Q. (Andrew) Using APL right-to-left would let you get rid of assignment
without needing new notation just to reduce the number of brackets.

Q. What size applications? Their target is 128k. That should be doable as
Lars has one that works in 120k (“and I use standard syntax”: Lars :-).

The syntax stuff got a rough ride; otherwise interesting. Expect to see some
cool dancing numbers on watches.

Talks I Missed
To make it easy to see whether I have reported on a talk or not (and to prove
my point that I could not attend all the conference :-), here is a list of all
presentations that are not reported on above. In rough chronological order,
Talks:

• ANI's Digital Archive, Dan Antion

• Dialect Portability: Smalltalk to produce cross-language
consumable components, Giorgio Ferraris

• Cryptography & Smalltalk, Martin Kobetic, Cincom: Smalltalk
‘everything is an object’ consistency between small and large integers
makes for effective and performant cryptography. Martin published his
Smalltalk security VW presentation app into the Cincom Open
Repository so you can walk through it.

• BottomFeeder - a Smalltalk Development case study, James
Robertson, Cincom: my write up of James’ talk at last year’s StS gives
background. He plans to replace TwoFlower by withStyle.

• FastCGI for Smalltalk: Integrating Smalltalk Into An Apache
based Web Site, Peter Lount: Peter was unable to attend; the talk was
cancelled.

• OpenAugment: Preserving Engelbart's Augment Heritage, Jeff
Eastman

• SmalltalkDoc, Mark Roberts, Cincom

• Cincom Smalltalk Protocol News, Leonard Lutomski et al

• Clean Slate Smalltalk and its Progress, Brian Rice

• Building structured drawing editors using connectors and Squeak,
Ned Konz

• Advanced VisualAge Programming, Eric Clayberg

Tutorials:

• Seaside, Julian Fitzell and Andrew Catton

• Modular Smalltalk -- Refactoring, David Simmons

• Introduction to Web Technologies, James Foster

• Using GLORP, Alan Knight

• Smalltalk Garbage Collectors, John McIntosh

• Introduction To GemStone, Bill Erickson

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 51
Panel: Evolving Smalltalk

STIC and Vendor BoFs
STIC meeting

(I only caught the end of this). Lunch on the final day was added to the
schedule as STIC was under budget for the conference, a good sign. The
2005 Smalltalk solutions is now planned and for the first time in a while
there will be a cash surplus from this conference to help it along.

Everyone registered last thing (Just-in-Time registration). STIC asks you
to please register earlier next time, as it is less frightening for them.

Store BOF, Diane Severide, James Robertson, Cincom
Publishing
Should we publish the base? Yes. I asked that it be made a one-operation
choice: with each VW major release, there should be a menupick (or better
a script that you swipe and run; no point having a menu item you only
execute once) to publish a set of pundles that Cincom thinks should be the
‘base’ publish for that release? Jim and Diane thought that made sense. I
argued that the fact that publishing the base takes quite a few point and
clicks, with several choices along the way, discourages many people.

Someone thought he was observing slower publishing in 7.2 than in 5i4 on
Oracle. Others had not noticed any such effect.

Browsing Published
Search tools would be useful in large repositories. Let people search on
package properties. People asked for a versionless pundle comment,
visible when browsing published pundles in the public repository. (c.f.
squeak map functionality). I agree; at present, I find myself writing this in
my blessing comments, and relying on my general knowledge of the
Smalltalk world to guess what someone else’ pundle probably does. (The
obvious thing is to make the pundle’s comment itself visible.)

Someone also suggested adding a license property (which public domain
licence is this under) so people could see if there were any issues with
reusing and republishing this. Diane pointed out that pundles have
properties, so adding one was straightforward. I felt that you would
probably already have downloaded something in which this was a real
concern to see if you wanted it, and that such info would usually be in the
pundle comment.

Merge process
The process is described on Travis’ Griggs Blog. For a two-version merge,
the process is:

• Load the head package you intend to merge into the image (or
otherwise reconcile the image version with the Store repository, if it is
not already).

• Select the divergent package from the version list, or graph, tool and
invoke ‘Merge into Image’.

52 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
• The Merge tool finds all differences and resolves all it can, showing the
results and options, each marked with a square icon:

— open (not yet resolved, merge tool does not know how)

— cross (merge tool thinks it can resolve)

— black (resolved)

You select from alternate resolutions, or select the nearest choice, edit
it and ‘Accept’. You can ‘Apply’ each resolution one by one or just
‘Choose’ resolutions and ‘Apply All Resolved’ in a single act at end.

• If the parent version of the package you loaded on starting is not the one
you want to be the merged version’s parent, re-reconcile the merged
version that is now in your image with the repository. This re-points
you at the head of the chain, gives you correct version numbers, etc.

• Publish merged version

The re-reconcile prompts you for a new parent and you choose the one that
you want to regard as the prior version of this merge. You may want to do
this because, unlike Squeak’s Monticello, Store pundles always have just
one parent; after merging, invoking reconcile again lets you choose which
prior version you wish to regard as this parent (other is also recorded but
only as a blessing level comment).

The three-way merge process is similar but you need to be aware that the
tool’s three-way merge behaviour interacts with Blessing Levels. The
default behaviour looks at the ‘Integration-ready’ blessing level. You
subclass PackagePolicy class and MergePolicy class, overriding a couple
of methods, to adapt the tool’s behaviour to your blessing-level usage.

Someone thought merging slow. It takes a while to complete a merge. Then
you have to review everything and then publish. Could it be done in fewer
point and clicks? However they noted that it does much more than most
merge tools, so taking longer to do it was understandable and acceptable.

Overrides
Someone had found the override system confusing. He got frustrated by
seeing overrides vanish from his image. An AR is out to preserve overrides
when reloading. However, as several people stressed, do not use overrides
if you can possibly avoid it. They are there to stop you being blocked by
conflicts with code you cannot (or should not) manage. They are not there
to let you avoid sorting out conflicts in your own code. Only use them to
meet this necessity. Never use them from choice.

Line-ups
I (and most people) use bundles for line-ups. Travis (and some others) use
pre-reqs. To a degree, bundles were what there were so we used them. In
Envy, you could overlap configuration maps, like bundles.

An open edition in Envy was a mini-stream of development. In Store, you
use the blessing levels to store Work-in-Progress. In Envy, a ‘release’
action makes the change visible to others immediately, whereas in Store

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 53
you must look to see if there’s been a change. I thought that was OK as
regards how people actually work. Diane thought you only needed to know
when you first started work in a given pundle; if later it is updated by
someone else, you have a merge issue anyway. Alan pointed out that if you
wanted Store in your image to poll given repository(ies) for updates to
loaded pundles, that would be very easy to do and would recreate exactly
what Envy did (polled when you re-entered an Envy window); is it wanted?

I find that Envy, practically-speaking, rarely warns me of rival releases
unless I think to look (if I’m working on an unreleased edition, then it goes
on looking unreleased in my application manager when what is released
changes), which is much like Store. I don’t want to be warned on release;
as Diane says, it’s too late then. I want to be warned when I start work if
there is later work in the same place. Envy could give earlier warning since
it knows when I and other users edition the same things. The Coast tools
did this. Store’s more frequent motivation of versioning offers earlyish
visibility. Alan’s polling idea might find users in large separated teams.

Bundles and Parcels
When a third party provided parcels they could not provide a bundle
structure. They can now; a utility is in open repository.

Post-BOF discussions: Tools and Replication
Do/will RB code tools exist that show version lists, version graphs, etc.? (I
might attempt such tools myself if not.)

Can the replication UI more clearly indicate when ‘Export changes ...’ as
against ‘Export’ (speaking in Envy terms) is being done, and/or (maybe
just another way of asking for the same thing) how far export of specific
versions is integrated with reconciliation with the export’s target?

Incremental saving / loading of binary?

IBM VAST
VAST BoF, Greg Bonadies1 and John O’Keefe, IBM
Greg began by saying that IBM’s general public strategic direction is
WebSphere, Java and J2EE. VAST has hundreds of applications and many
customers. Their customers have told them these are strategic to their
businesses and need to run for another five, ten or twenty-five years. These
applications have to evolve or perish so VA must support this, and must
provide resources from the IBM community.

Greg wants customers to contact IBM and make known their wishes for VA
Smalltalk. The long-term viability of VA Smalltalk does not come out of
thin air. There are specific revenues to handle.

Some people may move to VAST. Some may be compelled to move from
VAST. Greg mentioned the Synchrony BoF that would occur next day.
Their wish for VAST is to provide viable options for their customers.

1. I mis-identified Greg as Greg Curfman in an earlier version of this report; apologies.

54 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
Q. How do we talk to IBM? Greg emphasised that he and John will gladly
hold conference calls, and are here till Wednesday. “Talk to us.” They can
arrange NDAs with customers to share confidential details on future plans.

Q. VAST has a revenue stream and must support itself from it? Yes. IBM
has 2000 products to support and must put its strategic resources behind its
strategic initiatives.

Q. Any effort to increase the marketing base for VAST? No that’s not
happening. IBM has finite resources for marketing and has made its
strategic choices. VAST is still selling new licences but the revenue stream
will not support marketing.

Someone asked if anyone in the (fairly full) room wanted to leave
Smalltalk for Java and J2EE, as IBM’s overall strategic thrust suggested.
The answer was a very clear no.

Someone pointed out that the upgrade licences are a lot for what you get,
and pointed out that many VAST users are not upgrading for that reason.
There was discussion whether a changed licence funding model would in
fact increase the net revenue of VAST. Cincom has benefited from a
changed funding model (which is not to say that VAST should necessarily
imitate their licence).

Greg stressed he had to allocate finite funds to things essential for users, so
please tell him what those are. Points made included:

• Keeping VAST working on new platforms is much more important
than exploiting features of new platforms. If MS bring out a new
Windows version, get VAST working on it. Exploiting some new
feature it offers matters much less.

• Do not let the WebSphere + Java thrust prevent the direct VAST-to
WebSphere connection from continuing to be available.

Off-line discussions pursued the question of how revenues are allocated for
Passport customers; how does the VA Smalltalk group get attribution for
their contribution? Rumour hints this is a sore point with the VAST team.
Allocations are determined from on high, based on license counts and other
factors (presumably chicken entrails and/or tea leaves are also involved),
but it is conceded that they truly have no idea of how many active licenses
are out there, so revenue allocations are not particularly accurate.

My opinions on all this are

• fortunately, the productiveness of Smalltalk means that Greg and John
will be able to do more for VAST with the finite revenue they get than
otherwise.

• IBM top management’s wish that their customers would consolidate on
their core strategic offerings is nothing personal to Smalltalk (e.g. IBM
says there are still 200 million lines of Cobol in use worldwide, and
they recently publicised Cobol-EJB interworking tools).

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 55
Why are IBM top management still telling people that Java and J2EE will
take over the world. Do they still believe it? Or do they, on the contrary,
fear they have finite time left to grow critical mass for their own suite in
this domain before it becomes yesterday’s hype? Will not most VAST
customers who can be so influenced already have been? Will not most who
practically-speaking can port already have done so? (For example, GEICO
management, influenced by IBM strategic marketing presentations, are
now talking of reworking their VAST system in Java in a few years, but,
like many who talked so before the millennium, it may never happen. The
GEICO developers are ex-COBOLers trained in Smalltalk, so they have no
C background to make Java attractive.)

Other sources, unconnected with this conference or Smalltalk, tell me that
many IBM consultants are unhappy with the ‘push our strategic products’
drive from on high; unhappy to the point of resignation.

Synchrony Presentation
This was entirely a Synchrony sales pitch. We started with Timm Vonu
going over the objectives of ‘modernization’. Although not overtly stated,
it became clear that ‘modernization’ == ‘conversion to Java’ (not how I
would use the word :-). He then talked about options in a transformation
roadmap, the critical success factors, and, finally, the Synchrony vision. He
emphasized that Synchrony was pro-Smalltalk and was anxious to provide
a transition platform built in Smalltalk.

We then had a presentation by Slavik. He spoke of Synchrony's long
expertise in migration. He alluded to the virtues of strong typing in
programming languages, and mentioned that they had extended the
refactory browser kernel for use in their language transformations. They
import the code into a code analyser and then they use an interactive type
inferencing methodology to derive a typed object hierarchy. The code is
stored in a kind of lexical repository, and once all the typing is in place,
transformation rules are applied depending on the source and target
platforms to create the converted code.

There were a number of questions, all from Bruce Badger, interspersed
through Slavik's presentation:

Q. What kind of code can be imported into the code analyser? Any sort of
Smalltalk in, any sort of Smalltalk or Java out.

Q. Can Java be imported? Not today. The code analyser only handles
Smalltalk presently, and, for Java output, translated code is sent to Eclipse.

Q. This seems like a useful tool for analysing current code. Yes. Eric
Clayberg commented that it might be considered a ‘modernise in place’.

Q. What would it take to get a Java to Smalltalk translation? A client that
wants it.

Q. Have you done any migrations from VW 2.5 to 7.x? No, not yet

56 Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
We were treated to a very quick demo of their tool, showing how classes
are brought into the repository, type information is initially inferred, then
refined by a user. Once typing is in place, transformation of code is looked
at. This involves looking at type mapping and message mapping, with both
of these relying on looking at things such as how method returns are used.

My own take on this is that many have tried Smalltalk-to-Java generation
from the late nineties on. When the project was complex, the results have
been dismal. Verison tried generation in one of their three failed attempts
to port a large project from Smalltalk to Java. I know of a large German
trading system that attempted to reimplement in Java and simply ran out of
money. Many others tried and failed. Smalltalk is too granular for Java
interfaces, resulting in namespace pollution and performance degradation.
A more serious problem is the interaction of generation with the 80/20 rule.
The generation rules work in most cases, not all, producing a system that
must be refactored, but the generated code is not very human readable and
not very refactorable. So the money and time you ‘saved’ by generating
you then start to burn as you push the generated system towards usability.

It is fair to note that Synchrony have background in Smalltalk inter-dialect
porting and are building their tool in Smalltalk, so may do better than
others, but I’m dubious that ‘better’ would actually mean practical success
for large complex projects. As for Return-On-Investment!!! Synchrony
offer (for a noticeable price tag) to do an ROI analysis as the first step.
Perhaps it is a good idea to show managers a real cost as computed by
people who want the work and who made you pay for the information
(conveys plausibility to some types :-). I could do an accurate ROI for less,
but the manager who proposed the port might not like its phrasing. :-)

Other Discussions
General

Most of world’s shipping is managed in Smalltalk. I talked to Cherie from
Nynex (shipping firm). Nynex are moving from their VA application to a
VW one through having merged with another shipping firm that use VW.

There was a strong Australian contingent at this StS. It’s the first time
someone has given a seasonal date (Sames, “summer / autumn for release
of Pollock”) and been asked, “Which hemisphere’s summer will that be?”

JWARS is now on 35 sites with another four deployments upcoming. They
are running some major scenarios this year, including some anti-submarine
warfare scenarios.

The Smalltalk market is picking up again in the U.S., no doubt in part
because of a more general pickup. There are twice as many Smalltalk-
mentioning adds on the lists as there were this time last year, and some
people who, this time last year, were interested in UK work, now have
contracts, or expect to have, closer to home.

Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004 57
Eliot has sent several Watson-dumps to the blue screen of death team in MS
and gets frustrated when the support people can’t see some details of these,
and he can’t cut and paste them; if only they used Smalltalk.

GemStone
SUnitGS and GemKit, Joe Bacanskas, Washington Mutual
SUnitGS has no UI, you run it from a workspace test by test. The standard
pattern is that setUp starts transaction, tearDown aborts (get example tests
from Joe). Running suites: be aware GS is capitalisation aware: call your
category ‘Testing’ not ‘testing’ to get buildSuite working OK.

GemKit for Envy was rationalised by Paul Baumann, download it from
sourceforge. GemKit for Store is being worked on by Joe for UBS (via
Magnus of Georg Heeg). In the Store version, the GemStone namespace is
a peer of the Smalltalk namespace, not child. Movement is always a push,
from VW image to GemStone or vice versa. The comparison UI uses VW
DiffList, etc., facilities to compare code in GemStone and in VW.

Other GemStone
Bob Nemec does canonicalised dates and canonicalised zeros. He has
powerful UI-driven tools for instance migration: turn this collection into
class with seven instVars, split this class into three subclasses, etc.

Monty Kamath mentioned that GemStone databases with 2 Billion objects
exist with OTL, Cosmom, etc.

Follow-up Actions
• Ask Joe Bacanskas for GemStone SUnit test examples.

• Get Store parcel bundle-structure utility from the Open Repository.

Conclusions
Seaside and withStyle had a high profile at this conference. “Seaside is to
other Smalltalk web toolkits as Smalltalk is to most other OO languages;
it’s as simple as that.” Cees de Groot knows whereof he speaks; he runs a
hosting and web company. My Smalltalk webwork has only been hobby
projects so I speak with less authority when I say that Seaside justifies
Cees’ opinion, and when you add withStyle you get a very strong intranet
and internet-developer-environment story. I will watch with interest what
others with serious commercial web-app experience make of it, especially
as it offers the possibility of starting small and growing.

Lars and Georg carried on the ‘Small is beautiful’ trend with impressive
developments linked to well-designed business cases with plenty of room
for growth. Most Smalltalk survived the lean years in the complex-app, fat-
client world of systems so challenging that repeated attempts to rewrite
them in Java failed. Maybe we’re now breaking into new territory.

Written by Niall Ross of eXtremeMetaProgrammers. REPORT ENDS.

	Smalltalk Solutions 2004, Seattle, 3 - 5 May 2004
	Style
	Author’s Disclaimer and Acknowledgements
	Summary of Presentations
	Opening: Allen Davis of KSC and STIC, and Alan Knight of Cincom
	Exhibitors
	Web Development
	Keynote: Winning the Application Server Arms Race: Using Smalltalk to Redefine Web Development, A...
	Rendering and Editing with CSS in Smalltalk, Michael Lucas-Smith and Rowan Bunning
	Further Demo of withStyle at later session
	Smalltalk, XML on the Web, Michael Lucas-Smith, Wizard Information Services

	Applications and Experience Reports
	Replacing Oracle with GemStone/S: The Agony and the Ecstasy, Joseph Bacanskas
	The OpenSkills Skillsbase Project, Bruce Badger
	TAPDance: a system for maintaining multiple versions of software, Howard Ferch
	3D CAD Framework for Smalltalk, A-S Koh
	SmallBars - a bar code library for Smalltalk, Dan Antion
	Using SNMP for High-Performance Network Monitoring, Alex Pikovsky, Quallaby
	Smalltalk in an Autonomous Underwater Vehicle, Jon Hylands

	Frameworks
	Keynote: Smalltalk/V and .NET: A Comparison of Virtual Machines, George Bosworth, Microsoft
	Introduction to State Replication Protocol (SRP), Paul Baumann
	Visibility-based Report Framework, Bob Nemec
	Making relational data first class, Avi Bryant
	Pollock: Into The Breach, Sames Shuster

	Tools, Testing and Process
	Opentalk, Load Balancing and Multi-Image SUnits, Leonard Lutomski, Cincom
	Pragmatic Enterprise Software Delivery, Angus MacArthur and Sean Morrison
	Inside the VisualWorks Tools, Vassili Bykov, Cincom
	Building a 'Test-Friendly' Application, James Foster
	Squeak Tools, Colin Putney
	Is Software Development in Developed Countries still affordable?, Georg Heeg

	How small can Smalltalk be?
	Smalltalk Mobilizes, Georg Heeg
	Squat: A Minimal yet Extensible Smalltalk System, Craig Latta
	Keynote: Making Embedded Systems Serviceable, Lars Bak
	Microlingua, Maurice Rabb

	Talks I Missed

	STIC and Vendor BoFs
	STIC meeting
	Store BOF, Diane Severide, James Robertson, Cincom
	Publishing
	Browsing Published
	Merge process
	Overrides
	Line-ups
	Bundles and Parcels
	Post-BOF discussions: Tools and Replication

	IBM VAST
	VAST BoF, Greg Bonadies and John O’Keefe, IBM
	Synchrony Presentation

	Other Discussions
	General
	GemStone
	SUnitGS and GemKit, Joe Bacanskas, Washington Mutual
	Other GemStone

	Follow-up Actions
	Conclusions

