
Joe Armstrong

Erlang

Though OOP came from many motivations, two were central.
 The large scale one was to find a better module scheme for
complex systems involving hiding of details, and the small
scale one was to find a more flexible version of assignment,
 and then to try to eliminate it altogether.

...doing encapsulation right is a commitment not just to
abstraction of state, but to eliminate state oriented
metaphors from programming.

The Early History of Smalltalk
Alan Kay

for i in {objects, processes}
{
 create very large numbers of $i
 $i work the same way on all OS's
 $i's are garbage collected
 $i are location transparent
 $i cannot damage other $i
 $i are defined in the language
 creating and destroying $i is light-weight
}

Erlang is Smalltalk
as Alan Kay wanted
it

- Niall Dalton

How do we build systems that run
forever, are scalable, fault-tolerant,
evolve with time and work
reasonably well works despite
errors in the software?

Difficult

To make
a fault-tolerant system

you need at least

two

computers

this is

Distributed
Programming

Simplify the problem

no sharing
pure message passing

no locks

This is

 Concurrency
Oriented

Programming

Concurrency Oriented Programming
● A style of programming where
concurrency is used to structure the
application

● Large numbers of processes
● Complete isolation of
 processes
● No sharing of data
● Location transparency
● Pure message passing

My first message is that
concurrency
is best regarded as a program
 structuring principle”

Structured concurrent programming
 – Tony Hoare

Redmond, July 2001

COP Design Rules

1) Identify the concurrent operations in your problem
2) Identify the message channels
3) Write down the set of message seen on each channel
4) Write down the protocols
5) Write the code

Try to make the design isomorphic to the problem – ie a
1:1 correspondence between the process/message
structure in the model and the problem.

Who am I?

Inventor of Erlang, UBF
Chief designer of OTP
Founder of the company Bluetail

Currently
Senior System Architect
Ericsson AB

Current Interests
Concurrency Oriented Programming
Multi-core CPUs
FPGAs
Cats
Motorbikes

How do we correct hardware failures?
Replicate the hardware

How do we correct software errors?
Having two identical copies of the software
won't work – both will fail at the same time

 and for the same reason

Why does your computer crash?
Which fails more often, hardware or software?

Architecture

Talk organisation

Introduction Erlang

Programming techniques
Programming fault-
tolerant systems

Building an
application

OTP Case studies

Conclusions

API's and protocols

It works!

History
1986 – Pots Erlang (in Prolog)
1987 – ACS/Dunder
1988 – Erlang -> Strand (fails)
1989 – JAM (Joe's abstract machine)
1990 – Erlang syntax changes (70x faster)
1991 – Distribution
1992 – Mobility Server
1993 – Erlang Systems AB
1995 – AXE-N collapses. AXD starts
1996 – OTP starts
1998 – AXD deployed. Erlang Banned. Open Source Erlang.

 Bluetail formed
1999 – BMR sold
2000 – Alteon buys Blutail. Nortel buys Alteon
2002 – UBF. Concurrency Oriented Programming
2003 – Ph.D. Thesis - Making reliable systems
2006 – Multi-core Erlang

How do we make systems?

Systems are made of black boxes (components)

Black boxes execute concurrently

Black boxes communicate

How the black box works internally is irrelevant

Failures inside one black box should not crash
another black box

Problem domain
● Highly concurrent (hundreds of thousands
 of parallel activities)
● Real time
● Distributed
● High Availability (down times of
 minutes/year – never down)
● Complex software (million of lines of code)
● Continuous operation (years)
● Continuous evolution
● In service upgrade

Architecture

Philosophy
 Way of doing things
 Construction Guidelines
 Programming examples

Philosophy
Concurrency Oriented Programming

1. COPLs support processes
2. Processes are Isolated
3. Each process has a unique unforgeable Id
4. There is no shared state between processes
5. Message passing is unreliable
6. It should be possible to detect failure in
another processes and we should know the reason
for failure

System requirements

R1. Concurrency processes
R2. Error encapsulation isolation
R3. Fault detection what failed
R4. Fault identification why it failed
R5. Live code upgrade evolving systems
R6. Stable storage crash recovery

Isolation
. Hardware

components operate
concurrently are
isolated and
communicate by
message passing

Consequences of Isolation

Processes have share nothing semantics and data must be
copied

Message passing is the only way to exchange data

Message passing is asynchronous

GOOD STUFF

Processes

Copying

Message passing

Language

My program should not be able to crash your program
Need strong isolation and concurrency

Processes are OK – threads are not (threads have
shared resources)

Can't use OS processes (Heavy – semantics depends on
OS)

Isolation

My program should not be able to
crash your program.

This is the single most important property that a system
component must have

All things are not equally important

Erlang

Lightweight processes (lighter than OS threads)
Good isolation (not perfect yet ...)
Programs never loose control
Error detection primitives
Reason for failure is known
Exceptions
Garbage collected memory
Lots of processes
Functional Agner Krarup Erlang (1878-1929)

Erlang in
11 minutes

Erlang

You can create a parallel process
 Pid = spawn(fun() -> ... end).

then send it a message
 Pid ! Msg

and then wait for a reply
 receive

 {Pid, Rely} ->
 Actions

 end

It typically takes 1 microsecond to

create a process or send a message

Processes are

isolated

Generalisation
Client
Pid = spawn(fun() -> loop() end)
Pid ! {self(), 21},
receive

{Pid, Val} -> ...
end

Server
loop() ->
 receive

 {From, X} ->
 From ! {self(), 2*X},

loop()
end.

A simple process

Client
Double = fun(X) -> 2 *X end,
Pid = spawn(fun() -> loop(Double) end)
Pid ! {self(), 21},
receive

{Pid, Val} -> ...
end

Server
loop(F) ->
 receive

 {From, X} ->
 From ! {self(), F(X)},

loop(F)
end.

Generalised

A generic server

-module(gserver).
-export([start/1, rpc/2, code_change/2]).

start(Fun) ->
spawn(fun() -> loop(Fun) end).

rpc(Pid, Q) ->
Pid ! {self(), Q},
receive

{Pid, Reply} ->
Reply

end.

code_change(Pid, Fun1) ->
Pid ! {swap_code, Fun1}.

loop(F) ->
receive

{swap_code, F1} ->
loop(F1);

{Pid, X} ->
 Pid ! {self(), F(X)},

loop(F);
end.

Double = fun(X) -> 2*X end,
Pid = gserver:start(Double),
...
Triple = fun(X) -> 3*X end,
gserver:code_change(Pid, Triple)

A generic server with data

-module(gserver).
-export([start/2, rpc/2, code_change/2]).

start(Fun, Data) ->
spawn(fun() -> loop(Fun, Data) end).

rpc(Pid, Q) ->
Pid ! {self(), Q},
receive

{Pid, Reply} ->
Reply

end.

code_change(Pid, Fun1) ->
Pid ! {swap_code, Fun1}.

loop(F, Data) ->
receive

{swap_code, F1} ->
loop(F1, Data);

{Pid, X} ->
{Reply, Data1} = F(X),

 Pid ! {self(), Reply},
loop(F, Data1);

end.

Trapping errors

In Pid1 ...
Pid2 = spawn_link(fun() -> ... end).
process_flag(trap_exit, true)
...

receive
{'EXIT', Pid, Why} ->
 Actions

end.

Pid1

Pid1 Pid2

1/0

{'EXIT', Pid1, badarith}

error detection + reason for failure (slide 10)

Why remote trapping of errors?

To do fault-tolerant
computing you need
at least TWO
computers

Computer1

Computer1 Computer2

Error

{'EXIT', Computer2, Reason}

Which means you
can't share data

Programming for errors

If you can't do what you want to do try and do
something simpler

Workers

Supervisor
Links

The supervisor monitors the
workers and restarts them if
they fail

A supervision hierarchy

Workers

Supervisor and worker

Links

Supervisor
Links

Workers

OTP behaviours

Generic libraries for building
components of a real-time system.

Includes

Client-server
Finite State machine
Supervisor
Event Handler
Applications
Systems

case studies

Ericsson AXD301 (in Engine)
 Size = 1136150 lines Erlang
 Dirty functions = 0.359%
 Availability = 99.9999999%

Alteon (Nortel) SSL accelerator
 Size = 74440 line Erlang
 Dirty functions = 0.82%

Ref: Armstrong Ph.D. thesis

Ericsson AXD301 (part of “Engine”)
Ericsson GPRS system
Alteon (Nortel) SSL accelerator
Alteon (Nortel) SSL VPN
Teba Bank (credit card system – South Africa)
T-mobile SMS system (UK)
Kreditor (Sweden)
jabber.org

Commercial Successes

How do we make systems?

Systems are made of black boxes (components)

Black boxes execute concurrently

Black boxes communicate with defined (universal)
protocols

The protocol is checked externally

How the black box works internally is irrelevant

Protocol checker

APIs done wrong

+type file:open(fileName(), read | write) ->
 {ok, fileHandle()}
 | {error, string()}.

+type file:read_line(fileHandle()) ->
{ok, string()} | eof.

+type file:close(fileHandle()) ->
true.

+deftype fileName() = [int()]
+deftype string() = [int()].
+deftype fileHandle() = pid(). silly() ->

 {ok, H} = file:open("foo.dat", read),
 file:close(H),
 file:read_line(H).

APIs with state
+type start x file:open(fileName(), read | write) ->
 {ok, fileHandle()} x ready
 | {error, string()} x stop.

+type ready x file:read_line(fileHandle()) ->
 {ok, string()} x ready
 | eof x atEof.

+type atEof | ready x file:close(fileHandle()) ->
 true x stop.

+type atEof | ready x file:rewind(fileHandle()) ->
 true x ready.

silly() ->
 {ok, H} = file:open("foo.dat", read),
 file:close(H),
 file:read_line(H).

Protocols or APIs

+state start x {open, fileName(), read | write} ->
 {ok, fileHandle()} x ready
 | {error, string()} x stop.

+state ready x {read_line, fileHandle()} ->
 {ok, string()} x ready
 | eof x atEof.

+state ready | atEof x {close, fileHandle()}->
 true x stop.

+state ready | atEof x {rewind, fileHandle()) ->
 true x ready

How things work

inside the black

box is irrelevant

Check the protocol at
 the

boundaries to
 the black box

Finally

My program should not be able to
crash your program.

This is the single most important property that a system
component must have

All things are not equally important

