
Scl :
a Simple, Uniform and Operational Language

for Component-Oriented Programming
in Smalltalk

Luc Fabresse Christophe Dony Marianne Huchard

LIRMM
Université Montpellier 2

France

September 3, 2006

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 1 / 32

Outline

1 Context

2 A Short Overview of Scl

3 The Connection Mechanism

4 AOP Support Using Connectors

5 Publish/Subscribe Support Using Properties

6 Conclusions

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 2 / 32

Outline

1 Context

2 A Short Overview of Scl

3 The Connection Mechanism

4 AOP Support Using Connectors

5 Publish/Subscribe Support Using Properties

6 Conclusions

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 3 / 32

The High-Level View of CBSD

Component

Component Library
Application

Programmer Architect

creates

stored used
D

A

D

creates

B

A C

D

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 4 / 32

Current Issues in CBSD

Fundamental Questions

What is a component? [Szyperski, 1996]

Component structure?

Component composition?

Practical Needs

Models

Languages

Tools

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 5 / 32

Outline

1 Context

2 A Short Overview of Scl

3 The Connection Mechanism

4 AOP Support Using Connectors

5 Publish/Subscribe Support Using Properties

6 Conclusions

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 6 / 32

Simple Component Language (Scl)

What is Scl?

A component-oriented programming language

Main purposes of Scl

Simple, few and only fundamental entities

Uniform, not an asymmetric extension of an object-oriented language

Enables unanticipated composition of independently developed
components

Synthesis of existing component-oriented languages ideas

Operationnal, implemented in Smalltalk

Extensible to experiment new ideas

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 7 / 32

Basic Entities (1/2)

Component

Black box

Ports decribed by interfaces

Provides and requires services

Port

Interaction point

Plug

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 8 / 32

Basic Entities (1/2)

Service

Functionnality

Like a method or a set of methods

Interface

Describes the valid uses of a port

Service signatures sets, protocols, contracts, ...

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 9 / 32

Example : a chatclient component

Chatting

ChatClient

Interface

Orientation

Port

Caption:

Networking

connect:
disconnect
sendData:
receiveData

join:
leave
send:

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 10 / 32

1 Context

2 A Short Overview of Scl

3 The Connection Mechanism

4 AOP Support Using Connectors

5 Publish/Subscribe Support Using Properties

6 Conclusions

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 11 / 32

The Connector entity

Connector = Reification of Connection

Better separation

Non-fixed connection semantics

Solves adaptation problems

Possible creation of a reusable library of connectors

The General Connector Structure

Sources, a set of ports

Targets, a set of ports

Glue code

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 12 / 32

A Graphical View of a Connector

<<SclConnector>>

Required Provided
Ports

glue code

Sources Targets

Ports

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 13 / 32

Example: Connection of two matching components

<<SclBinaryConnector>>
Chatting

Source

ConnectionManager

Target

ChatClient

Networking Networking

SclBinaryConnector new

source: (chatClient port: #Networking)

target: (connectionManager port: #Networking) ;

connect

Similar to:

bindings in Fractal

connect primitive in Archjava

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 14 / 32

Example: Connection of two Components with Adaptation

ChatClient

Networking Networking
<<SclBinaryConnector>>

Code glue

Chatting

Source

ConnectionManager

Target

connect:
disconnect
sendData:

receiveData

closeConnection
openConnectionTo:

send:
receive:

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 15 / 32

Example: Connection of two Components with Adaptation

receive
sendData:

closeConnection
openConnectionTo:

Target

send:
disconnect
connect:

ChatClient

Networking Networking
<<SclBinaryConnector>>

Code glue

Chatting

Source

ConnectionManager

receiveData:

SclBinaryConnector new

source: (chatClient port: #Networking)

target: (connectionManager port: #Networking)

glue: [:source :target :message |

(message selector = #connect:) ifTrue: [

^ target openConnectionTo: (message arguments)

]

... "some more stuff"

] ; connect.

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 16 / 32

1 Context

2 A Short Overview of Scl

3 The Connection Mechanism

4 AOP Support Using Connectors

5 Publish/Subscribe Support Using Properties

6 Conclusions

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 17 / 32

Mixing AOP and Component Appoaches

Why?

Encapsulate the scaterred code of specific concerns (Log, Transaction,...)

How?

Asymmetric approaches

Symmetric approaches

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 18 / 32

Limited AOP support in Scl

Joint Points on Ports

before/after/around service invocation

before/after/around connection/disconnection

Special Connectors

Source ports are coupled with a keyword (beforeServiceInvocation, ...)

Weaving

Regular connection/disconnection mechanism

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 19 / 32

Example: A Logger component

LoggerChatClient

Networking Chatting

log:

<<beforeSI>>

Logging

glue code

<<SclFlowConnector>>

SclFlowBinaryConnector new

source: ((chatClient port: #Chatting) beforeServiceInvocation)

target: (logger port: #Logging)

glue: [:source :target :message |

target log: (message selector asString)

] ; connect.

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 20 / 32

1 Context

2 A Short Overview of Scl

3 The Connection Mechanism

4 AOP Support Using Connectors

5 Publish/Subscribe Support Using Properties

6 Conclusions

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 21 / 32

Motivating Example (1/2)

How to connect a chatclient component with a GUI component ?

Chatting

Accessing

chatText
chatText:

displayText
displayText:

ChatClient

Networking

TextArea

Accessing

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 22 / 32

Motivating Example (2/2)

How to connect a chatclient component with a GUI component ?

ChatClient

Networking

Notifying

TextArea

Accessing

chatTextChanged:

Chatting

Accessing

chatText
chatText:

displayText
displayText:

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 23 / 32

The limitations with components

Publisher side limitations

Event signaling (Archjava, CCM, ...)

Subscribers management (Javabeans, ...)

Subscriber side limitations

Receivable events (CCM, ...)

Subscriber reaction

Goal

Extract the application dependent code from components

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 24 / 32

The Scl Solution Based on Properties

Property

External state of a component (Javabeans)

Automatically notifies its value changes if needed

Only declared by the component programmer

Property Structure:

A name

An access port provides getter and setter services

A notification port to invoke notifying services

Notifying services

Notify Before Change, nbc:value:oldValue:

Notify After Change, nac:value:oldValue:

...

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 25 / 32

Example: The chat client component with a ChatText
property

a connected component is able to do (nothing, prevent the
modification or change the property value). An example of
connection using properties is depicted on Figure 6 and the
corresponding SCL code is shown on Figure 7.

displayText:

chatText:

chatText

ChatClient

ChatClientGui

DisplayingChatText

Networking

SendingChatting

nac:value:oldValue:

nbc:value:oldValue:

Figure 6. Connect components using proper-
ties changes notifications

c l i e n t := CHATCLIENT new.
c l i e n t G u i := CHATCLIENTGUI new.

SCLBINARYNACCONNECTOR new
source: (c l i e n t notifyPortOf: # C h a tT e x t)
target: (c l i e n t G u i port: # D i s p l a y i n g)
glue: [:source :g u i :message |

g u i displayText: (message arguments second).
]; connect.

Figure 7. Connecting two components based
on a property changes notifications

In this example, each time the chatText prop-
erty of the CHATCLIENT is changed, this results in
changing the displayed text on the CHATCLIENTGUI due
to the SCLBINARYNACCONNECTOR that only considers
nac:value:oldValue: invocations on the source port.
Special connectors like SCLBINARYNACCONNECTOR ease
connection writing. Moreover, a software architect is able
to build reusable connectors that can be included in a li-
brary of generic connectors. Actually, SCL provides dif-
ferent kinds of connectors like SCLBINARYNACCONNEC-
TOR, SCLBINARYNBCCONNECTOR, PROPERTYBINDERCON-
NECTOR ensuring that the value of the target property is al-
ways synchronized with the value of the source property.

Figure 8 shows the complete code of the CHATCLIENT.
Figure 9 shows the complete connection code necessary to
build the application. Figure 10 shows a simulation code
and Figure 11 shows the screenshot of this simulation1 exe-
cution.

1The whole code is available at http://www.lirmm.fr/˜fabresse/scl

SCLCOMPONENTBUILDER create: # C h a t C l i e n t
properties: ’ c h a t T e x t nickName ’.
outPorts: ’ Ne twork ing ’ inPorts: ’ C h a t t i n g ’.

CHATCLIENT>>init ” p r e s e n t e d i n F ig u r e 3”

CHATCLIENT>>primitivechatText
” i n t e r n a l component a c c e s s o r d e f i n e d by t h e
programmer and used by t h e g e n e r a t e d c h a t T e x t
p r o p e r t y a c c e s s o r ”
chatText ifNil: [chatText := ’ ’].
ˆchatText

CHATCLIENT>>primitivechatText: newV
chatText := newV

CHATCLIENT>>primitivenickName
nickName ifNil: [nickName := ’ anonymous ’].
ˆnickName

CHATCLIENT>>primitivenickName: n
nickName := n

CHATCLIENT>>leave
(self port: # Ne twork ing) disconnect.

CHATCLIENT>>send: aMessage
(self port: # Ne twork ing)
send: (’< ’, self nickName, ’> ’, aMessage)

CHATCLIENT>>receive: aMessage
(self accessPortOf: # c h a t T e x t) chatText:
(self chatText, String crlf, aMessage).

Figure 8. The CHATCLIENT SCL code

Properties are a new feature that helps component pro-
gramming by providing a higher abstraction to component
programmers and software architects. Figure 12 illustrates
this fact because a new functionality is added to our chat
client with only one ”state connection”.

This connection allows our chat client application to
automatically send the current title played by our music
player to other chat users. In other words, each time
the CurrentTitle property of the component MUSIC-
PLAYER is modified, a message is sent to chat users using
the send: service of the CHATCLIENT component through
its Chatting port.

5 Related Work

Our approach is similar to Javabeans component
model [16]. A Javabeans programmer declares properties
through syntactic name conventions like get and set and
writes the event signaling code to enable connection based
on Javabeans properties event signals. The Javabeans model
distinguishes different kinds of properties depending on sig-
nals like bound properties that notify connected Javabeans

4

nbc:value:oldValue:

chatText:

nac:value:oldValue:

ChatClient

Chatting
ChatText

Networking

chatText

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 26 / 32

States changes connections

Standard connections

Based on connectors (ports + glue code)

Source ports are notifying ports of properties

Features

Uniformity

Extensibility

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 27 / 32

Example: The whole chat client application

P

P

ChatClient

Networking

Chatting

ChatText

NickName

ChatClientGui

Networking

NetworkManager

<<SclBinaryNacConnector>>

Displaying

Sending

<<SclBinaryNacConnector>>

SclBinaryNacConnector new

source: (chatClient notifyPortOf: #ChatText)

target: (chatClientGui port: #Displaying)

glue: [:source :gui :anInvocation |

gui displayText: anInvocation arguments second

] ; connect.

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 28 / 32

Implementation of Scl

Advantages of Smalltalk

Prototyping is easier and faster than in statically typed languages

The meta-level enables message interceptions, addition of new entities
(Component, Connector, ...), ...

Block can be used for representing glue code

A step to investigate what could be a dynamic component oriented
language

Difficulty(ies) with Smalltalk

Encapsulation

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 29 / 32

Outline

1 Context

2 A Short Overview of Scl

3 The Connection Mechanism

4 AOP Support Using Connectors

5 Publish/Subscribe Support Using Properties

6 Conclusions

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 30 / 32

Conclusions

Scl

A component-oriented language

Only one entity of reuse: Component

Component Composition

Connections based on Connectors

AOP support using Connectors

Component Properties

Prototyped in Smalltalk

Current Work

Larger case studies

Investigate dynamicity

Improve the prototype

Tools

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 31 / 32

Thanks...

Questions?
Suggestions?
Comments?

Fabresse, Dony, Huchard (Lirmm/UM2) Component-Oriented Programming ESUG 2006 32 / 32

	Context
	A Short Overview of Scl
	The Connection Mechanism
	AOP Support Using Connectors
	Publish/Subscribe Support Using Properties
	Conclusions

