
SOPHIE

B. Eckardt, J. McIntosh, S. Riggins, T. Rowledge, M. Rueger, B. Stein

The Institute for the Future of the Book, Impara, funded by the Mellon and

MacArthur Foundations and affi liated with the University of Southern California

http://sophieproject.org

NEW STRUCTURES FOR BOOKS

Sophie is an all purpose tool for dealing with media. It allows users to easily create books that can

contain any sort of media on hand – text, images, sounds, videos, animations. Sophie does for media

what a physical book does for text and images: with Sophie, authors can create multimedia books. You

might think of it as a wrapper for anything digital, but it’s more than that. Sophie differs from previous

platforms for electronic reading by giving the author as much control over the form of what they’re making

as the content.

Sophie is media-agnostic: all media is the same inside of Sophie. You could make a book based around a long

piece of text (like a traditional novel). Or you could make a book based around a series of photographs (something

like a slideshow), adding narration or a soundtrack to play with the rhythm. Or you could make a video-based book,

or a book based around a single photograph, annotated with audio to tell a story. Or you could mix any of these

(and more) forms together to create something entirely new.

You might object that it’s possible to make something vaguely like this in HTML. Sure. But you’re going to have to

spend a lot of time concentrating on the structure of the website you’re creating: do we really need to think about

information architecture when we’re trying to make things? Sophie makes this seamless.

USER INTERFACE

The user interface design is based on a few simple assumptions:

the most often used functions and views should never be more than a mouse click away minimal use of modifi er

keys no modes, but always immediate actions combined with undo effi cient, semi-automatic management of

screen real estate. By following these rules we have completely avoided contextual menus and minimized the

number of items in pull down menus.

The HUDs can have multiple levels, presenting the most often used

functions on the top one.

None of these editors has the usual moded OK/Cancel, but changes are

applied immediately. Everything can be undone, the user basically works

in a live preview environment. Views that need to remain visible are kept

in tabbed fl aps which can be easily collapsed and expanded to provide

effi cient management of the screen real estate.

When the user stops typing or selects a

piece of text or a frame, halo buttons appear

automatically. These buttons provide access

to editors for style, trigger, linking, etc.

Clicking on a halo button opens up a HUD

(head up display) close to the mouse cursor.

OVERVIEW INTERNALS

• cTwip - all sizes in Sophie are based on cTwips

= 1/127 twip (twip = 1/20 point = 1/1440 inch), = (1/7200) mm (integer conversion to metric and imperial)

• Rome, Freetype - Rendering based on Rome (Squeak Cairo) and Freetype fonts

• XUL, CSS - UI elements are defi ned in XUL fi les and skinned with CSS

• Storage, versioning - XML storage, everything is versioned

• system clipboard - Access to platform clipboard formats allowing to copy/paste RTF, images etc

• Quicktime - Integration of Quicktime supporting a wide range of media

• fi le locations - Full integration into the platform fi le system, use of tmp, user and application directories

• portable packaging - The same directory structure can be used on all supported plattforms. Appears as a bundle

(single fi le) on Mac OS

ARCHITECTURE

Sophie is built around a relatively small architectural core

(Sophie Common Core Architecture). It guarantees that all documents

created by various means and in different environments are compatible and portable

between these environments. The application (UI) is built based on the Sophie Application

Architecture. Every (UI) function (even basic things like editing text) comes into Sophie as part of

a so-called extension. While preserving compatibility on the document level, different combinations

of extensions can provide very different applications built around the architectural core. We hope to

avoid feature creep by allowing a fl exible composition of extensions suiting a user‘s needs. The UI is

built based on XUL and CSS plus the necessary support code in extensions. Existing Sophie applications

can not only be themed by different CSS fi les, but also redesigned to a certain extent by supplying different

XUL fi les.

The main linear content – the fl owing text and embedded illustrations etc. - of Sophie books is kept in a tree

structure. Each item, or node, in the tree represents either a structural component or a raw content component.

Using a tree avoids the pitfalls of tag based representations (such as HTML) with the risk of dangling open or close

tags, mixed up nesting etc.after editing. It also a very effi cient way to represent and manipulate large amounts of

content.

Templates and frames defi ne the layout and structure of book.

A hierarchy of compositors, page, frame, text, composites the content

from the content trees into the template and frames layout of a page.

Display pages fi nally are the pre-stage for actually rendering a page.

They can be viewed as device independent display lists, supporting

optimized display updates.

The Resource Manager is responsible for storing, copying, updating, or

altering the book data. By consistent use of URIs instead of the usual

mix of fi lenames and URLs, the XML based pluggable storage can be local

via mulitple fi les in a folder, or a zip based fi le, or remote on the internet, or interfaced to a database.

Timelines allow an author to synchronize events to time, media and pages. The author is able to arrange elements,

pictures, sounds, video and slideshows along a timeline and then trigger the timeline from any marker in the system.

Individual media elements will show and hide as they come into and leave scope along the timeline. Events can also

be generated from user interactions. Triggers like mouse up/down can be attached to frames or marked areas of text

so clicking on a certain word can open another window, start a timeline or movie, etc.

