Towards
Unified Aspect-Oriented Programming

Noury Bouragadi Abdelhak Seriai Gabriel Leblanc

{bouraqadi, seriai} @ensm-douai.fr
Ecole des Mines de Douai - Dépt. G.I.P.
941, rue Charles Bourseul - B.P. 10838

59508 Douai Cedex - France

Abstract

Aspect-Oriented Programming (AOP) is a paradigm that aims at improving soft-
ware modularization. Indeed, aspects are yet another dimension for structuring
applications. The notion of aspect refers to any crosscutting property. Such cross-
cutting can be either dynamic or static. Dynamic crosscutting refers to applications
execution flow. While, static crosscutting refers to applications structure. Although
many AOP approaches does enable these two kinds of crosscutting, this support is
not always satisfactory. Aspects code is complex and often requires different con-
structs for expressing static and dynamic crosscutting. We present in this paper
the foundation for an AOP platform that unifies the description of both kinds of
crosscuttings. This solution relies on reflection and mixin-based inheritance.

Key words: aspect-oriented programming, static crosscutting, dynamic
crosscutting, reflection, mixin-based inheritance

1 Introduction

Aspect-Oriented Programming (AOP) [15,10,11] is among key post-object
paradigms that appeared during the last decade. This programming approach
supports separation of concerns. Building an application using the AOP ap-
proach leads to defining on the one hand one application core, and on the
other hand an arbitrary number of aspects. Application core is usually a set
of classes. Aspects are concerns that cross-cut application core. Aspects are
not only separated from application core, they are also isolated one from the
other. Hence, AOP promotes modularization. Development responsibilities of
aspects and application core can be dispatched among members of a project

ESUG 2005 Research Conference August 2005, Brussels, Beligium

team. Once all modules (aspects and application core) are ready, the full ap-
plication can be “integrated” through the process of weaving.

The notion of aspect refers to any property crosscutting a software. Such
crosscutting can be either dynamic or static [16].

Dynamic crosscutting: A crosscutting is said to be dynamic if it affects
applications behavior, i.e. execution flow. The implementation of dynamic
crosscuttings relies on the concepts of pointcuts (set of points within the
execution flow) and advices (blocks of code to evaluate at some points of
the execution flow).

Static crosscutting: A crosscutting is said to be static if it affects applica-
tions structure. The implementation of static crosscuttings relies on intro-
ductions of new building blocks (e.g. classes, methods, instance variables)
and restructuring their relationships (e.g. inheritance).

* *

Diary Event

Organization

1
1
employee
1
*

Person

subordinate
1 | head
Supervisor

Fig. 1. Distributed Diary System Core

*

We illustrate these two of aspects using an example of a distributed diary
system. Application core for this system is a set of classes describing employees,
organization, diaries and events (see figure 1). This system can have different
aspects. We present in the following two of them: log which illustrate dynamic
crosscutting and absence management which illustrate static crosscutting.

The log aspect displays on a console traces describing system’s activity. So,
logs can be produced on the addition a new employee to the organization or
events addition/removal to/from diaries. Log is a typical aspect with dynamic
crosscutting. Trace production is triggered by the application execution. If no
execution happens, the log aspect computations (i.e. logging) isn’t performed.
This is often the case of “infrastructure oriented” aspects.

The absence management aspect deals with employees vacations. Each person
has a certain amount of available vacation days and can request vacations.
Vacation requests has to be validated by the requester’s boss before a new
event is added to the requester’s diary. Storing available vacation days re-
quires a new instance variable to be inserted into the Person class. Handling
requests and updating available vacation days count requires new methods to
be inserted in classes Person and Supervisor. Absence management is a typical

aspect with static crosscutting. It extends existing classes with new instance
variables and methods. This is often the case of “business oriented” aspects.

Among existing AOP approaches, some does support only one kind of crosscut-
ting [7,2,8,9,19]. Others [16,13,21] do support both static and dynamic cross-
cuttings. But, these platforms lead quickly to complex code, even for simple
aspects. And, often aspects definitions are non uniform: different constructs
are used for expressing code introductions and advices. This is particularly
true for AspectJ the most popular AOP language, as we show in section 2.1.

In this paper, we setup the foundations for a platform that unifies the pro-
gramming of crosscuttings should they be static or dynamic. We use reflec-
tion [23,18] and mizin-based inheritance [6] to extend an object-oriented plat-
form in order to supports AOP. No new language construct is needed, and only
a minimal set of concepts is introduced and applied uniformly to express both
static and dynamic crosscutting. We believe that this platform provides sim-
plicity and uniformity, without scarifying expressiveness. Implementations of
simple aspects remain simple, and those of complex aspects are still possible.

Reflection is the ability of a system to reason on and to act upon itself. In
the context of programming languages, reflection provides developers with two
programming levels: a base-level and a meta-level. The base-level is where ap-
plications building blocks (i.e. structure) are defined. The meta-level is where
applications semantics (i.e. behavior) is defined. Programming within both
base- and meta-levels is uniform since it relies on the same constructs in a
reflective language.

Having access to applications structure and behavior is not enough to define
aspects. Applications need to be decomposed so that each aspect definition
is isolated and separated from the others. We use mixin-based inheritance to
achieve this separation. Mixin-based inheritance is an alternative to multiple-
inheritance which avoids automatic linearization issues. A mixin can be viewed
as a subclass parametrizable with its superclass. In the proposed solution,
each aspect is defined as a set of mixins. This description applies uniformly to
express both static and dynamic crosscuttings.

With our model, each class of the application core is linked to a meta-level
class. The process of weaving inserts mixins into class hierarchies. Mixins
related to static crosscuttings are inserted into the hierarchy of base-level
classes. While, mixins related to dynamic crosscuttings are inserted into the
hierarchy of meta-level classes.

The remainder of this paper is organized as follows. Section 2 motivates the
need for a platform supporting the definition of both functional and non-
functional aspects. This motivation is illustrated using a distributed diary
example that will be used throughout the paper. Then, foundations of unified

AOP based on reflection and mixin-based inheritance is described in section 3.
Last, after discussion related work in section 5, section 6 ends the article ends
with concluding remarks and some perspectives.

2 Motivation

In this section, we motivate the need of a unified AOP based on AspectJ,
the AOP mainstream platform. This motivation is illustrated using the dis-
tributed diary example exposed in the introduction. We show some limitations
of AspectJ when it comes to building reusable aspects with static and dynamic
crosscutings, namely the log aspect and the absence management aspect.

2.1 Some AspectJ Limitations

2.1.1 A First Absence Management Aspect

01: public aspect SimpleAbsenceManagement {
02: private int Person.vacationDaysCount;

03: public int Person.getVacationDaysCount(){
04: return this.vacationDaysCount;}

05: public void Person.setVacationDaysCount(int newVacationDaysCount){
06: this.vacationDaysCount = newVacationDaysCount;}

07: public String Person.toString(){
08: return “\nAvailable Vacation Days =" + this.getVacationDaysCount();}

09: public int Person.defaultVacationDaysCount(){
10: return 30;}

11: pointcut constructorExec(Person aPerson):
12: execution(Person.new(String, String)) && target(aPerson);

13: after(Person aPerson): constructorExec(aPerson){
14: aPerson.setVacationDaysCount(aPerson.defaultVacationDaysCount()); }

Fig. 2. A simple implementation of the absence management aspect in AspectJ

1

Figure 2 gives a first version' of the absence management aspect in AspectJ.

1 We provide here only part of the actual code of the aspect.

This aspect is not reusable since it directly refers to application core class
Person. Indeed, a new field named vacationDaysCount is introduced in class
Person for counting available vacation days. This vacation days counter is used
for vacation requests (not shown on figure 2) and also for the string describing
person returned by the toString() method.

In order to initialize the counter, the only possibility is to use an advice (lines
13 and 14) that acts after the execution of the constructor of class Person
(lines 11 and 12). Figure 3 provides a simple program using the classes Person
and Supervisor after weaving the SimpleAbsenceManagement aspect.

Evaluated Code
Supervisor chief = new Supervisor("Bart", "Simpson");
Person joe = new Person("Joe", "Dalton");
joe.setBoss(chief);
System.out.println("---println(joe)---\n" + joe);
System.out.println("---println(chief)---\n" + chief);
Console Display

---println(joe)----
Available Vacation Days = 30
-—-println(chief)---
Available Vacation Days = 30

Boss of 1 person(s)

Fig. 3. A code evaluated and its result after weaving the SimpleAbsenceManagement
aspect

In this example, we can see different limitations of AspectJ. First, a simple
extension of an existing code can lead to somewhat complex code. This is the
case with the initialization of the vacationDaysCount field. Such initialization
which simply requires extending an existing constructor is actually performed
using a rather “unnatural” code based on a pointcut and an advice.

Another problem can arise on evolution. Suppose we add a toString() method
into the Person class definition. In this case, AspectJ fails weaving the Sim-
pleAbsenceManagement aspect and reports a conflict. The only solution to this
conflict is to replace the defintion of toString() method provided by the aspect
with pointcut and advice constructs (see figure 4). Note that the within(Person)
condition in the pointcut description ensures that the advice is performed only
once: for the toString() method defined within the Person class. Otherwise, the
advice would be performed twice for instances of the Supervisor class, since this
latter does redefine the toString() method and does and super send.

A similar problem arise when two aspects introduce methods with the same
signature in the same class. In this case, weaving fails and one needs to rewrite
at least one of the two aspects and replace method introduction with state-
ments based on the pointcut and advice constructs.

[y

: pointcut toStringExec(Person aPerson):
. execution(String Person.toString()) && target(aPerson) && within(Person);

N

3: String around(Person aPerson): toStringExec(aPerson){
4: String initialString = proceed(aPerson);
5: return initialString +

6: "\nAvailable Vacation Days =" + aPerson.getVacationDaysCount();}

Fig. 4. Replacement of the toString() method definition with a pointcut and an
advice in the SimpleAbsenceManagement aspect

Note that AspectJ weaver does handle the case of homonymous fields. Fields
scopes are restricted to aspects where they are defined. For example, let Al
and A2 two aspects that introduce within the same class fields of the same
name. Methods introduced in A1 will access the field introduced in Al. And
methods introduced in A2 will access the field introduced in A2. The same
solution applies if an aspect introduces a field with a name already used in
core application code. Although this solution is convenient for most cases,
sometimes one may want to merge such fields in order to share data.

Last, we can note that using AspectJ one can easily end up “hardwiring”
aspect definitions to a particular application. This is the case of the SimpleAb-
senceManagement which explicitly refer to the Person class. In the following,
we’'ll see that disciplined programming can avoid this pitfall and enable aspect
reuse. However, we’ll face other limitations.

2.1.2 A Reusbale Absence Management Aspect

Figure 5 provides the definition of a reusable absence management aspect 2
in AspectJ. Actually, there are two aspects. The first one AbsenceManagement
(lines 1 to 15) is reusable cause not bound to any application code. The second
aspect AbsenceManagementImpl (lines 16 and 17) extends the former with links
to the core application code.

The AbsenceManagement introduces an new “marker” interface named Ab-
senceRequestor (line 2). All classes which implement this interface will be ex-
tended with members introduced in lines 3 to 10. The actual class which is
extended this way is Person which is referenced in AbsenceManagementImpl
(line 17). The Person class is linked to the marker interface AbsenceRequestor
using the “declare parents” statement.

The use of a marker interface has a consequence on the pointcut declaration
which enables the initialization of the vacationDaysCount field (lines 11 to 13).

2 We provide here only part of the actual code of the aspect.

01: public abstract aspect AbsenceManagement {
02: public interface AbsenceRequestor {}
03: private int AbsenceRequestor.vacationDaysCount;

04: public int AbsenceRequestor.getVacationDaysCount(){
05: return this.vacationDaysCount;}

06: public void AbsenceRequestor.setVacationDaysCount(int newCount){
07: this.vacationDaysCount = newCount;}

08: public int AbsenceRequestor.defaultVacationDaysCount(){return 30;}

09: public String AbsenceRequestor.toString(){
10: return “Available Vacation Days =" + this.getVacationDaysCount();}

11: pointcut constructorExec(AbsenceRequestor requestor):
12: execution(AbsenceRequestor+.new(..)) && target(requestor) &&
13: lcflowbelow(execution(AbsenceRequestor+.new(..)));

14: after(AbsenceRequestor requestor): constructorExec(requestor){
15: requestor.setVacationDaysCount(requestor.defaultVacationDaysCount()); }

16: public aspect AbsenceManagementimpl extends AbsenceManagement{
17: declare parents : Person implements AbsenceRequestor;

Fig. 5. A reusable implementation of the absence management aspect in AspectJ

Because interfaces does not hold constructors, the execution statement should
refer to constructors of classes implementing the interface. This is what the
“+” refers to in the expression execution(AbsenceRequestor+.new(..)). How-
ever, this definition covers not only classes directly implementing the interface
(Person in our example), but also their subclasses (Supervisor in our example).
In order to avoid executing the advice twice, we need to complexify a bit more
the pointcut declaration. This is what is stated by line 13. Note however, that
we don’t get exactly the behavior provided in figure 2 (page 4). Indeed, with
the reusable definition of the absence management aspect (introduced in this
section), the initialization for instances of class Supervisor (subclass of Per-
son) is done after all constructors (defined in classes Supervisor and Person)
are executed. While in the non-reusable definition of the aspect (introduced
in section 2.1.1 page 4), the advice is done right after the execution of the
constructor of class Person.

Another problem with the reusable definition of the AbsenceManagement as-

pect provided on figure 5 is caused by the introduction of new methods such
as toString() (lines 9 and 10). This extension performs well if the Person class
does not implement a method with the same signature. However, if Person does
implement a such method, than the extension is simply ignored without warn-
ing. Similarly two aspects introducing in a same class two methods with the
same signature, the weaver does actually silently introduce only one methods
without warning. Even if warnings were available, aspect integrators would
have to change the aspects definitions and hence loose part of the benefice of
reuse.

1: pointcut toStringExec(AbsenceRequestor requestor):

. execution(String AbsenceRequestor.toString()) &&

target(requestor) &&

Icflowbelow(execution(String AbsenceRequestor.toString()));

sen

5: String around(AbsenceRequestor requestor): toStringExec(requestor){
6: String initialAnswer = proceed(requestor);

7: return initialAnswer + “\nAvailable Vacation Days ="

8 + requestor.getVacationDaysCount(); }

//Default method
9: public String AbsenceRequestor.toString(){return “’;}

Fig. 6. Replacement of the toString() method definition with a pointcut and an
advice in the AbsenceManagement aspect

To avoid such problems, one should replace every method with pointcuts
and advices. Figure 6 provides such rewriting for the toString() method. The
pointcut declaration captures the execution of method toString() by instances
of classes implementing the AbsenceRequestor interface. The !cflowbelow(. . .)
part of the declaration avoids performing the advice twice when there are su-
per.toString() sends. However, the resulting semantics is a bit different from
the one obtained with the non-reusable version of the aspect (Figure 2 page 4).
As shown by figure 7, the string corresponding to available vacation days is
appended at the end of supervisors descriptions. While in the non-reusable
aspect definition (Figure 3 page 5) available vacation days string is inserted
before the string providing the number of subordinates.

Yet another problem with AspectJ is that the code provided by figure 6 (page
8) need to insert a default implementation of the toString() method (line 9).
This definition is useful for cases where the core application classes does not
provide such a method. When such method is available, the default implemen-
tation is simply ignored. While the use of a default method implementation
allows reusing the aspect in multiple applications providing or not the intro-
duced method, it causes a non resolvable conflict when two aspects provide
two default implementations of the same method. Indeed, the default method
implementation is just a programming style and the weaver is not aware of

Evaluated Code
Supervisor chief = new Supervisor("Bart", "Simpson");
Person joe = new Person("Joe", "Dalton");
joe.setBoss(chief);
System.out.println("---println(joe)---\n" + joe);
System.out.println("---println(chief)---\n" + chief);
Console Display

-—-println(joe)----
Available Vacation Days
-—-println(chief)---
Boss of 1 person(s)
Available Vacation Days = 30

30

Fig. 7. A code evaluated and its result in the context of the reusable absence man-
agement aspect

it. So, weaving fails, and application integrators has to change one aspect and
remove the corresponding default method implementation.

2.1.8 Summary of AspectJ Limitations

To sum up, AspectJ has several limitations regarding a uniform description of
reusable aspects.

e Aspect] does not encourage reuse. Building reusable aspects mainly relies
on developers discipline.

e AspectJ introduces extra complexity for developers. They are offered two
different sets of constructs for implementing cross-cutting code: inter-type
declarations for static cross-cutting, and pointcuts and advices for dynamic
cross-cutting.

e Reusable definitions of simple aspects is complex and unatural, since it
requires having for each introduced method an inter-type declaration with
the default implementation of the method, a pointcut declaration capturing
a single execution of the method and an advice performing the desired
processing.

e [t is difficult if not impossible to always get the desired semantics when
building reusable aspects.

e [t is not possible to build fully reusable aspect. Application integrator may
always face conflicts requiring modifying aspects code.

2.2 Problem Statement

Starting from AspectJ limitations, we list here issues that should be addressed
by an AOP platform allowing to build reusable aspects with both static and

dynamic crosscutting. Such platform should be easy to learn and use, espe-
cially when it comes to maintain existing aspects. As proved by languages
such as Self [24] and Smalltalk [12], uniformity and simplicity can go along
with the language expressive power. We believe that this philosophy should
be adopted in AOP platforms. Issues to be addressed are the following:

Reusable Aspects: An AOP platform should encourage building reusable
aspects, by encouraging decoupling aspect’s code from other applications
parts.

Uniform Description of Crosscuttings: Having a small set of constructs
uniformly used to express both static and dynamic crosscuttings would ease
the learning and the understanding of aspects.

Uniform Conflict Management: Conflicts can occur between two static
crosscuttings or two dynamic ones alike. Developers should be provided the
same tools to handle both of them.

Crosscuttings Interactions: Dynamic crosscuttings should be able to alter
the whole application code including static crosscuttings.

3 Foundations for Unified AOP

Our proposal to support unified AOP relies on reflection [23,18] and mizin-
based inheritance [6]. Starting from plain Smalltalk, we introduce a minimal
set of concepts and apply them uniformly to express both static and dynamic
crosscutting. We believe that with this platform provides simplicity and uni-
formity, without scarifying expressiveness.

In this section, we first briefly remind reflection and mixin-based inheritance.
We then provide a description of aspects in a platform supporting unified
AOP. Last we describe the process of weaving aspects into application core.

3.1 Background: Reflection and Mizin-Based Inheritance

3.1.1 Reflection

Refection is the ability of a system to reason and to act upon itself. In the
context of object-oriented languages, reflection gives access to languages se-
mantics. A reflective OO language provides programmers with two program-
ming levels: base-level and meta-level. The base-level includes all application
objects (e.g. diary, person, supervisor, ...). The meta-level includes so-called
meta-objects which are objects describing the reflective language’s constructs
(e.g. classes) and how programs are evaluated (e.g. message dispatch).

10

We use in the reminder of this paper the Meta-Object Protocol (MOP) of
MetaclassTalk® [5,4], a reflective extension of Smalltalk. MetaclassTalk MOP
allows controlling objects creation and memory allocation, instance variable
reads and writes, message sends and receptions, and method lookup and eval-
uation.

3.1.2 Mixins

The concept of mixins has been introduced as an alternative to both single
and multiple inheritance. It provides more code sharing than allowed with
single inheritance, while avoiding issues arising with multiple inheritance and
its automatic linearization. A mixin can be viewed as an abstract subclass
parameterized with its superclass. This parameterization allow using a same
mixin in different class hierarchies.

The mixin model we use in the reminder of this paper is inspired by the
one introduced in CLOS [14]. A class can have many superclasses (mixins or
plain classes). But, we go further than CLOS where mixin-based inheritance
is just a programming style. We constrain the model to allow only multiple
inheritance of mixins [3,4]. A subclass can inherit from an arbitrary number
of mixins, but can have only one non-mixin superclass. Linearization chain of
a subclass starts with mixins in the order provided in the subclass definition.
The non-mixin superclass appears after mixins. So, methods are looked up
first in mixins and then in the non-mixin superclass.

3.2 Structure of Unified Aspects

Our proposal relies on using mixins to build unified aspects. A unified aspect
is a compound of: a Set of mixins, a pre-weaving script, and a post-weaving
script. Mixins provide descriptions of crosscutting code. While, pre-weaving
and post-weaving scripts are sequences of Smalltalk statements describing
initialization operations to be performed before and after weaving crosscutting
code into application core.

A crosscutting be it static or dynamic is implemented using a set of mixins.
Mixins describing static crosscuttings are aimed to be inserted (on weave-time)
into base-level class hierarchies. While, mixins describing dynamic corsscut-
tings are aimed to be inserted (on weave-time) into meta-level class hierarchies.

Besides aspects, developers have also to provide application core. That is a
set of classes organized using composition and inheritance relationships. These

3 http://csl.ensm-douai.fr/Metaclass Talk

11

classes define basic structure and behavior of application objects. They do not
hold any instance variable or method related to any aspect.

3.3 Weaving Unified Aspects

As mentioned before, weaving relies on reflection, and mixin-based inheritance.
For every class A in application core, the weaver builds a meta-object class
AMeta. Each instance of A is controlled by an instance of AMeta. So, instances
of AMeta provide the semantics of behavior (message sends and receptions)
and structure (instance variables reads and writes) of instances of A. An appli-
cation is obtained once mixins provided by various aspects are linked through
inheritance to application core classes and corresponding meta-object classes.
It worth noting that the meta-object class hierarchy is parallel to the class
one. So, given B a subclass of A, BMeta the class of meta-objects of instances
of B is built by the weaver as a subclass of AMeta

Once the weaver creates meta-object classes, it repeats the four following steps
for every aspect.

(1) Provide a map stating which aspect’s mixins to link to which core ap-
plication classes. This step is necessary because the aspects’ definitions
does not refer to application core classes.

(2) Evaluate the current aspect’s pre-weaving script.

(3) Link the current aspect’s mixins to application core classes.

(4) Evaluate the current aspect’s post-weaving script.

Because of the use of mixin-based inheritance, the cross-cutting code remains
isolated from application core (though it is linked). Relying on Smalltalk dy-
namicity our solution supports not only dynamic weaving, but also dynamic
unweaving. To complete this support, the structure of unified aspects includes
also pre-weaving and post-weaving scripts. The pre-weaving script is evalu-
ated before unlinking classes and mixins. The post-weaving script is evaluated
after unlinking classes and mixins.

Joint point are expressed using the map and the MOP. That is, joint point
cover class definitions, message sends and receptions, and instance variables
reads and writes.

3.4 Aspects Interactions and Conflicts

Aspects does not only alter the structure and behavior of the application core,
they also may affects each other execution. Consider an aspect Al that makes

12

a core application class C inherit from some mixin M1. Suppose also that we
weave into this application another aspect A2 that adds some other mixin
M2 to the superclass list of class CMetaObject, the class of meta-objects of
instances of class C. Therefore, the semantics of code introduced by the Al
aspect using the M1 mixin is altered by the A2 aspect which introduces the
M2 mixin.

Conflicts may arise when two aspects link mixins with homonymous methods
or instance variables to a same class. Mixin-based inheritance provides us with
a first solution to this open issue. Indeed, developers can order mixins linked
to each class. Methods introduced in mixins appearing first in a class definition
override homonymous methods defined in other mixins. This solution currently
implemented in our prototype is rather coarse grain and does not address
the case of homonymous instance variables. Van Limberghen and Mens [17]
describe a solution that tackles this problem.

Yet another cause of conflicts is having weaving scripts of different aspects
perform “contradictory” actions (e.g. setting some class variable to different
values). We address this issue by allowing developers choose aspects prece-
dence as in AspectJ. That is, developers choose the order of weaving. However,
the resolution of this kind of conflicts deserves further investigations we defer
to future work.

4 Examples

Figure 8 shows part of the distributed diary system built using our solution
after weaving*. Application core includes various classes: Person, Supervisor,
and Diary. However, these classes does not define any instance variable or
method related to aspects such as absence management, log or authentication.

. Tampie o Static Cross-cuiling: € aosence managemen aspec
1 Ezampl tati tting: the “ab gement” t

The absence management aspect introduces two new roles: absenceRequester
and absenceManager. An absenceRequester is supposed to store an available
vacation days. It is also supposed to understand the requestVacation: mes-
sage which argument is the vacation duration in days. As a response to this
message an absenceRequester checks if the duration is less than or equal to
available vacation days and then requests the confirmation of an absenceM-
anager (message acceptVacation: duration for: anAbsenceRequester). When the

4 The full code is available on-line at http://csl.ensm-douai.fr/Metaclass Talk

13

;_ C ;p;lo_n ______________ : Log Aspect Authentication Aspect

1 1

i . i

i =P Inherit from : <<mixin>> < <<mixin>>

: B : LoggerMeta AuthenticatedClientMeta
1 1

<<mixin>>
SecuredProviderMeta

DiaryMeta PersonMeta

Absence Management | I *
Aspect .
Application core ‘ | SupervisorMeta
1
<<mixin>> - I
AbsenceRequestor =~ Diary _l |
o~ Person |
<<mixin>> _‘ |
AbsenceManager L_ Supervisor

Fig. 8. A Subset of the distributed diary system built with our solution

absenceManager accepts the request, the absenceRequester decrements avail-
able vacation days counter and inserts an event describing the absence into a
diary.

Aspect subclass: #AbsenceManagementAspect

instanceVariableNames: ’’

classVariableNames: ’’

poolDictionaries: ’’

category: ’Unified AOP-Diary Example-Aspects’.

AbsenceManagementAspect >> initialize
super initialize.
self addAllMixins: {AbsenceRequester. AbsenceManager}

Fig. 9. Definition of the “absence management” aspect

Each one of the above described roles is implemented using a mixin. So, mixins
AbsenceRequester and AbsenceManager define appropriate instance variables
and methods for handling vacation requests. So, the description of the “ab-
sence management” aspect includes only these two mixins. Figure 9 shows that
this description consist in defining a class which instances have two mixins:
AbsenceRequester and AbsenceManager. Pre-weaving and post-weaving scripts
are implemented as methods in the aspect’s class. Because here we don’t need
any special processing, we don’t override the existing empty implementations
provided by class Aspect. It worth noting that there is no direct reference to
application core. Therefore, this aspect can be reused in other applications.

14

| absenceAspect |

absenceAspect := AbsenceManagementAspect new.
absenceAspect map: AbsenceRequester to: Person.
absenceAspect map: AbsenceManager to: Supervisor.
absenceAspect weave.

Fig. 10. Weaving the “absence management” aspect

To weave the “absence management” into our application, we need first to
map each of its mixins to application core classes. In our implementation,
an aspect is but an object that can be parameterized with a map describing
which mixins to link to which application core classes (see figure 10). Then,
by sending the weave message to the aspect, the weaving is finished. First,
pre-weaving script is performed. Then, the AbsenceRequester mixin is added
to the superclasses list of class Person. Next, the AbsenceManager mixin is
added to the superclasses list of class Supervisor. Last, the post-weaving script
is performed.

4.2 Ezample of dynamic cross-cutting: the authentication aspect

As mentionned above, an aspect definition can include mixins that can go
either to the base-level or to the meta-level. The “absence management” pre-
sented in the previous subsection is an aspect which definition relies on mixins
that are to be linked to base-level classes. Here we present the “authentica-
tion” aspect which implementation relies on changing the semantics of message
dispatch. So, it defines mixins that are to be linked to meta-object classes.

The authentication aspect introduces two roles: authenticatedClient and se-
curedProvider. An authenticatedClient holds a login and a password that grant
him access to services of some securedProvider. So, when an authenticated-
Client needs to send some message to a securedProvider, authorizedClient first
sends the pair login and a password to the service Provider. A securedProvider
accepts processing only messages sent by client with valid login and password.

The authentication aspect implements these two roles using two meta-level
mixins AuthenticatedClientMeta and SecuredProviderMeta. Figure 11 provides
the actual code of these two mixins. We can see that mixin Authenticated-
ClientMeta extends the semantics of message sending. It overrides method
send:from:to:arguments: introduced in the MetaclassTalk MOP to perform first
authentication before actually sending messages. Mixin SecuredProviderMeta
extends the semantics of message reception. It overrides method receive:from:-
to:arguments: introduced in the MetaclassTalk MOP to actually perform re-
ceived message from only authenticated clients.

The obtained authentication aspect is reusable since it does not refer to any

15

Mixin named: #AuthenticatedClientMeta
instanceVariables: 'login password '
category: 'Unified AOP-Diary Example-Aspects’.

AuthenticatedClientMetat > login: loginString password: passwordString
login := loginString.
password := passwordString

AuthenticatedClient >> send: selector from: sender to: receiver arguments: args
receiver metaObject authentify: sender login: login password: password.
Tsuper send: selector from: sender to: receiver arguments: args

Mixin named: #SecuredProviderMeta
instanceVariables: 'passwordDict authenticatedClients’
category: 'Unified AOP-Diary Example-Aspects’.

SecuredProviderMeta > initialize
super initialize.
passwordDict := Dictionary new.
authenticatedClients := Set new

SecuredProviderMeta > authentify: client login: login password: tentativePass-
word

| actualPassword |

actualPassword := passwordDict at: login ifAbsent: [Tself].

actualPassword = tentativePassword ifFalse: [self].

authenticatedClients add: client

SecuredProviderMeta > acceptMsg: selector from: sender to: receiver
Tsender == receiver or: |
(authenticatedClients includes: sender)]

SecuredProviderMeta > receive: selector from: sender to: receiver arguments:
args
(self acceptMsg: selector from: sender to: receiver) ifFalse: |
Tself error: 'Access restricted'].
Tsuper receive: selector from: sender to: receiver arguments: args

Fig. 11. Mixins for the “authentication” aspect

core application class. Now, let see how to weave it. In our diary application
accesses to a given diary have to be restricted to only some persons (e.g. its
owner). Hence, instances of Person should be authenticated before message
sends to instances of Diary. And, instances of Diary should check authoriza-

16

tions on message receptions. To get this behavior, we map mixin Authenti-
catedClientMeta to class PersonMeta and mixin SecuredProviderMeta to class
DiaryMeta. After weaving we get the mixins and meta-object classes linked.

Authentication Aspect

<<mixin>> <<mixin>>
AuthenticatedClientMeta SecuredProviderMeta
login passwordDict
password authenticatedClients
send: selector from: sender to: receiver arguments: args authentify: client login: login password: password
receive: selector from: sender to: receiver arguments: args

MetaObject

send: selector from: sender to: receiver arguments: args

receive: selector from: sender to: receiver arguments: args
erits Jfrom inherits from |
DiaryMeta
diary1Meta

PersonMeta 2 authentify: persl login:...

pers1Meta

instance of instance of
I 3 receive: #addEvent... \
meta link | 1 send: #addEvent. .. \ meta link
— 4 perform: #addEvent... \
instance of instance of

addEvent: meeting

Fig. 12. Example of an authentication aspect in action

Figure 12 provides an example showing how actually authentication is per-
formed. Every instance persl of class Person is linked to a meta-object pers1Meta
instance of PersonMeta. And, every instance diaryl of class Diary is linked
to a meta-object diarylMeta instance of DiaryMeta. When persl sends some
message, say addEvent:; to diaryl, the message sending is intercepted by the
perslMeta meta-object. This interception translates into a message send:. .. ®
implicitly dispatched (i.e. by the reflective infrastructure) to persl1Meta (step 1).
Arguments of this message are informations about the addEvent: message (e.g.
sender, receiver, selector,...). The meta-object perslMeta attempts to do au-
thentication by sending message authentify: persI login: loginOfPers1 password:
passwordOfPers1 to diarylMeta, the meta-object of the receiver (step 2). Then,
perslMeta delivers the addEvent: message to perform to diarylMeta (step 3).
The diarylMeta meta-object does check if the sender (i.e. persl) has been
granted access. If persl is not allowed to add an event to diaryl, an exception
is thrown. Otherwiser, the addEvent: message is performed by diaryl (step 4).

® The actual selector of this method is send:from:to:arguments:superFlag:orginClass:.

17

5 Related Work

5.1 Aspect]

AspectJ [16] mainly focuses on dynamic cross-cutting aspects. Nevertheless,
using inter-types declarations, it does support to some extent the definition
of static cross-cutting. Indeed, AspectJ allows the introductions of methods
and instance variables into existing classes. However, no conflict support is
provided when two aspects requires the introduction of homonymous instance
variables or methods in the same classes.

Aspects reuse is also an issue with AspectJ. As demonstrated in section 2.1.2
(page 6) AspectJ does not encourage reuse. Building reusable aspects mainly
relies on developers discipline and results into complex code even for simple
aspects.

Last, AspectJ is complex. Dynamic and static cross-cutings are defined using
different language constructs.

5.2 Hyper/J

Hyper/J stemmed from work on Multi-Dimensional Separation of Concerns
(MDSOC) [20]. It allows developers choose arbitrary dimensions to carve
up and modularize applications. Every dimension is implemented as a set
of classes. Composition rules allow developers express how to merge classes
defined in different dimensions.

Hyper/J shares with our work uniformly define aspects. However, our solution
supports incremental dynamic weaving and unweaving. In Hyper/J weaving
is a static operation that relies on program transformation. No information
about original dimensions are available in the resulting application.

5.8 AspectS

AspectS is a dynamic infrastructure supporting AOP in Smalltalk [13]. It
allows expressing uniformly both static and dynamic cross-cuttings. How-
ever, because AspectS’ implementation relies on method wrappers, only cross-
cuttings related to message dispatch can be expressed. Accesses to existing
instance variables can not be captured.

18

Besides, new instance variables can not be introduced in application classes.
Nevertheless, aspects can hold dictionaries that associate state to application
objects. This solution has two limitations. Access to dictionaries is slow com-
pared to direct access to instance variables. And, the code of aspects holding
such state is rather complex.

5.4 ClassBoxes

ClassBoxes are modules allowing the definition of scopped class extensions [1].
They can be used to implement static cross-cutting [2].

This approach supports dynamic weaving/unweaving of aspects. Besides, vis-
ibility control helps resolving some potential conflicts. However, the use of
ClassBoxes to implement dynamic cross-cutting is still to be studied.

5.5 Traits

Traits can be viewed as mixins without structure (no instance variables), but
with a powerful composition mechanism [22]. The trait model indeed provides
different operators to compose traits at methods granularity level. Developers
can for example hide or rename some trait’s method.

Traits can be used instead of mixins to implement unified aspects. Their com-
position operators can be helpful for solving conflicts among aspects. More-
over, the absence of instance variables definitions in traits reduces conflicts.
However, it also restricts their expressive power.

6 Conclusion and Future Work

We described in this article foundations for a platform allowing a unified
description of dynamic and static cross-cutting. To this end, we make use of
mixins as aspects building blocks. In this context, weaving relies on mixin-
based inheritance and reflection. Static cross-cutting is implemented using
mixins that are inserted into base-level class hierarchies by the weaver. While
dynamic cross-cutting is implemented using mixins are inserted into meta-level
class hierarchies by the weaver. This solution helps building reusable aspects
since mixins can be easily implemented without any connexion to application
classes.

One possible perspective of this work is to improve conflict resolution support.

19

Our current solution mainly relies on explicit mixins linearization. Applica-
tion developers can only reorder mixins linked to a given class. Granularity
of aspect conflict resolution can still be finer to allow even more conflicts res-
olutions. Traits compositional operators introduced by Schérli et al. [22] is a
possible solution to deal with conflicts at the method level. Another alterna-
tive is to use the mixin model introduced Van Limberghen et al. [17] which
provides operators to deal with both methods and instance variables conflicts.

Reuse is yet another intersting direction to follow. In this paper, we mentioned
mixin reuse to build different aspects. We also, presented aspect reuse to build
different applications. A third possibility yet to explore is aspect reuse to build
new aspects out of existing ones.

References

[1] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes: Controlling
visibility of class extensions. In Research Track of the ESUG 2004 Smalltalk
Conference, Kéthen (Anhalt), Germany, September 2004. Selected for
publication in the special issue on Smalltalk Language of the Elsevier
international journal ”Computer Languages, Systems and Structures” 2005.

[2] Alexandre Bergel and Stphane Ducasse. Dynamically applying static aspects
with classboxes. Journes Francophones de la Programmation Par Aspects,
JFDLPA’04, 2004.

[3] N. Bouraqadi. Efficient support for mixin-based inheritance using metaclasses.
In Workshop on Reflectively Extensible Programming Languages and Systems
at The International Conference on Generative Programming and Component
Engineering (GPCE’03), Erfurt, Germany, September 2003.

[4] N. Bouragadi. Metaclass composition using mixin-based inheritance. In
Research Track of the ESUG 20038 Smalltalk Conference, Bled, Slovenia, August
2003. European Smalltalk Users Group (ESUG).

[5] N. Bouragadi and T. Ledoux. Aspect-Oriented Software Development, chapter
12 — Supporting AOP using Reflection. Addison-Wesley, 2005.

[6] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings
of the European conference on object-oriented programming on Object-oriented
programming systems, languages, and applications, pages 303-311. ACM Press,
1990.

[7] Richard Cardone and Calvin Lin. Using mixin technology to improve
modularity. In Filman et al. [11], pages 219-241.

[8] Olivier Caron, Bernard Carre, Alexis Muller, and Gilles Vanwormhoudt. Mise en
oeuvre d’aspects fonctionnels rutilisables par adaptation. Journe Francophone
sur le Dveloppement de Logiciels Par Aspects, JEDLPA’04, September 2004.

20

[9] Brian de Alwis and Georg Kiczales. Apostle: A simple incremental weaver for a
dynamic aspect language. Technical Report TR-2003-16, University of British
Columbia, Vancouver, Canada, March 2003.

[10] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming.
Communications of the ACM, 44(10):29-32, October 2001.

[11] Robert E. Filman, Tzilla Elrad, Siobhdn Clarke, and Mehmet Aksit, editors.
Aspect-Oriented Software Development. Addison-Wesley, Boston, 2005.

[12] Adele Goldberg and David Robson. Smalltalk 80, volume 1 — The Language
and its implementation. Addison-Wesley, 1983.

[13] Robert Hirschfeld. Aspects - aspect-oriented programming with squeak. In
NODe ’02: Revised Papers from the International Conference NetObjectDays on
Objects, Components, Architectures, Services, and Applications for a Networked
World, pages 216-232, London, UK, 2003. Springer-Verlag.

[14] Sonya E. Keene. Object-oriented programming in common lisp: A programmer’s
guide to clos. Addison-Wesley, Reading, Massachsetts, USA, 1989.

[15] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Loingtier Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP 97 — Object-Oriented
Programming 11th FEuropean Conference, Jyvdskyld, Finland, volume 1241 of
Lecture Notes in Computer Science, pages 220-242. Springer-Verlag, New York,
NY, June 1997.

[16] Ramanivas Laddad. AspectJ in Action. Manning Publications Co., Grennwich,
Conn., 2003.

[17] Marc Van Limberghen and Tom Mens. Encapsulation and composition as
orthogonal operators on mixins: a solution to multiple inheritance problems.
Object Oriented Systems, 3:1-30, 1996.

[18] Pattie Maes. Concepts and Experiments in Computational Reflection. In
Proceedings of OOPSLA’87, pages 147-155, Orlando, Florida, 1987. ACM.

[19] Sean McDirmid and Wilson C. Hsieh. Aspect-oriented programming with
jiazzi. In AOSD ’03: Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 70-79, New York, NY, USA, 2003. ACM
Press.

[20] Harold Ossher and Peri Tarr. Using multidimensional separation of concerns
to (re)shape evolving software. Communications of the ACM, 44(10):44-50,
October 2001.

[21] R. Pawlak, L. Duchien, G. Florin, and L. Seinturier. Jac: a flexible solution
for aspect oriented programming in java. In A. Yonezawa and S. Matsuoka,
editors, Proceedings of Reflection 2001, number 2192 in LNCS, pages 1-24,
Kyoto, Japan, September 2001. Springer Verlag.

21

[22] Nathanael Schéarli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable units of behavior. In Proceedings ECOOP 2003, LNCS.

Springer Verlag, July 2003.

[23] Brian C. Smith. Reflection and Semantics in Lisp. In Proceedings of the 14th
Annual ACM Symposium on Principles of Programming Languages, POPL’8/,
pages 23-35, Salt Lake City, Utah, USA, January 1984.

[24] David Ungar and Randall B. Smith. Self: The power of simplicity. In OOPSLA
’87: Conference proceedings on Object-oriented programming systems, languages
and applications, pages 227-242, New York, NY, USA, 1987. ACM Press.

22

