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AOP (Aspect-Oriented Programming)

ApplicationAspects

Application Core

Authentication
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Log

Other Aspect

Weaving…
…
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Aspects and Weaving

! Application core = Set of classes

• Without any crosscutting code

! Aspects = crosscut application core classes

• Alter application structure

"Addition/Change of classes, methods, IVs, …

• Alter application execution flow

"Object creation/initialization, Access to IVs, Message
dispatch…

! Weaving = Performing changes defined in
Aspects
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Need for Unification

! Two kinds of crosscutting [Laddad 2003]:

• Dynamic crosscutting = changes that affect

applications execution flow

• Static crosscutting = changes that affect

applications structure

! Limitations of existing AOP platforms:

• Different constructs for all kinds of crosscutting

• Code complexity even for simple aspects

• Aspect reuse not always possible

• Aspect conflicts not always managed



Mixins

Unified Aspects = Mixins + Reflection
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Need for Mixin-Based Inheritance

! Context

• Single inheritance

• Unrelated hierarchies

• Same Properties

! Goal

• Reuse shared properties

• Avoid code duplication

• Alternative to multiple

inheritance
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Mixin-Based Inheritance
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Single Inheritance Behind the Scene
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[[BrachaBracha & Cook 90] & Cook 90]
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Example of Mixin Inheritance
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! Explicit Linearization on Definition:

• ColoredBoundedPoint mixins: {Colored. Bounded}

! Lookup list

• ColoredBoundedPoint, Colored, Bounded, Point

Reflection

Unified Aspects = Mixins + Reflection
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! A Reflective language gives access to its own
semantics

! Two programming levels

• evaluator ! meta-level ! meta-objects

• program ! base-level ! base-objects

! Meta-object = an object that controls one or
more base-objects

• i.e. Evaluates messages sends, field accesses, …

OO Reflective Languages
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Example of Meta-Object Usage

- Message sayHello received

on 16th august at 2pm

Log file

Hello ESUG!!

console

LogMetaObject

receive: aMessage

Person

sayHello

log

meta-object

meta

noury

sayHello

Instance of

Instance of

“write a log in some file”

“execute the right method”



Unified Aspects

Unified Aspects = Mixins + Reflection
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Developers Build Classes and Mixins
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Core Base-level

Core Meta-level

Aspect X

Static View After Weaving
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Aspect YAspect X

Dynamic (partial) view after weaving
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Weaving and Aspect Reuse

! Unified Aspects are reusable

• Application independent mixins

! Weaving aspects into specific applications

• Mapping mixins to application core classes

• Pre/Post weaving scripts

! Weaving =

1. Evaluate aspects pre-weaving scripts

2. Link classes to mixins

3. Evaluate aspects post-weaving scripts

Conclusion
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Summary

! Crosscutting can be static or dynamic

• Static : Alters applications structure

• Dynamic : Alters applications behavior

! A unified representation of crosscutting

• Mixins at base-level = static crosscutting

• Mixins at meta-level = dynamic crosscutting

! Reuse is encouraged

! Simple conflict management = Mixins ordering
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Future Work

! Weaving

• Pre/Post weaving scripts reuse

• High-level language for expressing pointcuts

! Advanced conflict management

• Persistence: support application rebuilds

• Order of pre/post weaving scripts evaluation

• Finer grain: Method/Instance variable level


