
Towards Unified

Aspect-Oriented Programming

Noury Bouraqadi, Djamel Seriai, Gabriel Leblanc

http://csl.ensm-douai.fr/research

ESUG 2005 - Brussels, Belgium

Ecole Ecole des Mines de des Mines de DouaiDouai

FranceFrance

2

AOP (Aspect-Oriented Programming)

ApplicationAspects

Application Core

Authentication

Persistence

Log

Other Aspect

Weaving…
…

3

Aspects and Weaving

! Application core = Set of classes

• Without any crosscutting code

! Aspects = crosscut application core classes

• Alter application structure

"Addition/Change of classes, methods, IVs, …

• Alter application execution flow

"Object creation/initialization, Access to IVs, Message
dispatch…

! Weaving = Performing changes defined in
Aspects

4

Need for Unification

! Two kinds of crosscutting [Laddad 2003]:

• Dynamic crosscutting = changes that affect

applications execution flow

• Static crosscutting = changes that affect

applications structure

! Limitations of existing AOP platforms:

• Different constructs for all kinds of crosscutting

• Code complexity even for simple aspects

• Aspect reuse not always possible

• Aspect conflicts not always managed



Mixins

Unified Aspects = Mixins + Reflection

6

Need for Mixin-Based Inheritance

! Context

• Single inheritance

• Unrelated hierarchies

• Same Properties

! Goal

• Reuse shared properties

• Avoid code duplication

• Alternative to multiple

inheritance

A

Object

B

X+D
iv1

iv2

iv4

iv5

foo

bar

m3

X+C
iv1

iv2

iv3

foo

bar

m1

m2

E

inherits from class

7

M
ixin

Mixin-Based Inheritance

inherits from class

"inherits" from mixin

X
iv1

iv2

foo

bar

A

Object

B

E

D
iv4

iv5

m3

C
iv3

m1

m2

8

Single Inheritance Behind the Scene

X
iv1

iv2

foo

bar

Mixin = SubclassMixin = Subclass
GeneratorGenerator

[[BrachaBracha & Cook 90] & Cook 90]

M
ixin

A

Object

B

E

inherits from class

D
iv4

iv5

m3

C
iv3

m1

m2

X2
iv1

iv2

foo

bar

X1
iv1

iv2

foo

bar

generates



9

Example of Mixin Inheritance

ColoredBoundedPoint

Point Colored

color
printOn:
color:
color

Bounded

boundsRectangle
printOn:
move:
bounds:
bounds

inherits
 fro

m mixininherits from class

M
ixin

M
ixin

1

2

! Explicit Linearization on Definition:

• ColoredBoundedPoint mixins: {Colored. Bounded}

! Lookup list

• ColoredBoundedPoint, Colored, Bounded, Point

Reflection

Unified Aspects = Mixins + Reflection

11

! A Reflective language gives access to its own
semantics

! Two programming levels

• evaluator ! meta-level ! meta-objects

• program ! base-level ! base-objects

! Meta-object = an object that controls one or
more base-objects

• i.e. Evaluates messages sends, field accesses, …

OO Reflective Languages

12

Example of Meta-Object Usage

- Message sayHello received

on 16th august at 2pm

Log file

Hello ESUG!!

console

LogMetaObject

receive: aMessage

Person

sayHello

log

meta-object

meta

noury

sayHello

Instance of

Instance of

“write a log in some file”

“execute the right method”



Unified Aspects

Unified Aspects = Mixins + Reflection

14

Developers Build Classes and Mixins

Core Base-level

Aspect X

Mixin X1

Mixin X2

A

B

C

Mixin X3

Aspect Y

Mixin Y1

Mixin Y2
Scripts
Scripts
Scripts

Scripts
Scripts
Scripts

15

Core Base-level

Core Meta-level

Aspect X

Static View After Weaving

Mixin X1

Mixin X2

A

B

C

A meta

B meta

C meta

Mixin X3

Aspect Y

Mixin Y1

Mixin Y2
Scripts
Scripts
Scripts

Scripts
Scripts
Scripts

16

Aspect YAspect X

Dynamic (partial) view after weaving

c1 C

C meta

c2

c meta 1 c meta 2

Mixin X2

Mixin X3

Mixin Y1

Mixin Y2

Instance of

meta

Instance of

meta



17

Weaving and Aspect Reuse

! Unified Aspects are reusable

• Application independent mixins

! Weaving aspects into specific applications

• Mapping mixins to application core classes

• Pre/Post weaving scripts

! Weaving =

1. Evaluate aspects pre-weaving scripts

2. Link classes to mixins

3. Evaluate aspects post-weaving scripts

Conclusion

19

Summary

! Crosscutting can be static or dynamic

• Static : Alters applications structure

• Dynamic : Alters applications behavior

! A unified representation of crosscutting

• Mixins at base-level = static crosscutting

• Mixins at meta-level = dynamic crosscutting

! Reuse is encouraged

! Simple conflict management = Mixins ordering

20

Future Work

! Weaving

• Pre/Post weaving scripts reuse

• High-level language for expressing pointcuts

! Advanced conflict management

• Persistence: support application rebuilds

• Order of pre/post weaving scripts evaluation

• Finer grain: Method/Instance variable level


