
Moose: an Agile Reengineering Environment

Stéphane Ducasse
ducasse@iam.unibe.ch

Tudor Gı̂rba
girba@iam.unibe.ch

Michele Lanza
michele.lanza@unisi.ch

Introduction

Software systems are complex and difficult to
analyze. Reengineering is a complex activ-
ity that usually involves combining different
techniques and tools.

Moose is a reengineering environment de-
signed to provide the necessary infrastruc-
ture for building new tools and for integrating
them. Moose centers on a language inde-
pendent meta-model, and offers services like
grouping, querying, navigation, and meta-
descriptions.

Several tools have been built on top of
Moose dealing with different aspects of
reengineering like: visualization, evolution
analysis, semantic analysis, concept analysis
or dynamic analysis.

The Architecture of Moose

Moose uses a layered architecture as shown
in Figure 1.

Information is transformed from source
code into a source code model. Moose sup-
ports multiple languages via the FAMIX lan-
guage independent meta-model. In the case
of VisualWorks Smalltalk models can be di-
rectly extracted via the built-in parser. In the

Baobab

CodeCrawler

ConanVanChronia

External Parser

Smalltalk

Java C++ Cobol

VisualWorks Interface CDIF/XMI Interface

CDIF XMI

Model 
Repository

Meta 
Model

Basic 
Analysis 

Tools
Meta 

Descriptions

Moose

data flow

Tools

uses
uses and extends

Haoax

Figure 1: The architecture of Moose.

case of other Smalltalk dialects, the code has
to be first ported to VisualWorks and then
imported into Moose. For other source lan-
guages like C/C++, Java Moose provides
an import interface for CDIF and XMI files.

Every model contains entities represent-
ing the software artifacts of the target sys-
tem. Every entity is represented by an object,
which allows direct interaction and query-
ing of related entities, and consequently an
easy way to query and navigate the model.
Moose can maintain and manipulate several
models in memory at the same time via a



A Browser with 
classes and a propertyFiltering Tool

Entity Inspector on a class and its properties

An entity can be interacted with
using the contextual menu

CodeCrawler displaying a System Complexity View.

CodeCrawler displaying a Hierarchy Evolution View.

Diagram Viewer showing 
the evolution of two properties.

History Inspector viewing the versions of a class 
and how a property evolved

Moose

CodeCrawler

Van &
CodeCrawler

Figure 2: Screenshots of Moose, CodeCrawler and Van.



model repository. Every entity is described
by a meta-description, which is then used by
the environment to display user interfaces or
load/save entities. These meta-descriptions
are extensible by other tools and are used by
different tools. Examples of the supported
meta-descriptions are: description of related
entities, menu, description of properties.

Moose also provides basic tools that use
the are generic by using the meta-descriptions
(see Figure 2): Browser, Entity Inspector and
Filtering Tool.

Tools Built on Top of Moose

CodeCrawler. CodeCrawler is a visual-
ization tool implementing polymetric views
which is based on a graph notion where the
nodes and edges in the graph can wrap the
entities in the model. For example, in Fig-
ure 2 we see a screenshot of CodeCrawler dis-
playing a hierarchy of a system called Jun. In
Figure 1 it is shown that CodeCrawler is used
by different tools for different visualizations.

ConAn. ConAn is a concept analysis tool
and its target is to detect different kinds of
patterns in the model based on combining el-
ements and properties. ConAn uses Code-
Crawler for visualization purposes and sup-
ports analyses like: X-Ray views for under-
standing the internal of classes, identification
of recurring code patterns, and views for hi-
erarchy understanding.

Van. Van is a tool for analyzing the evo-
lution of systems. At its core, it defines the
Hismo meta-model which is based on the no-
tion of history. In Figure 2 we show how
Van uses CodeCrawler to display the evolu-

tion of the class hierarchies in the Jun sys-
tem. Van offers other analyses like history
measurements, change characterization.

Chronia. Chronia is a tool that bridges
Moose with versioning systems like CVS
and it enables analyses of how developers
change the system.

TraceScraper. TraceScraper analyzes
the dynamic traces from different perspec-
tives. For example it offers measurements
and visualizations for dynamic traces.

Hapax. Hapax is a semantic analysis tool.
It makes use of the comments and names of
the identifiers from the code to recover the
domain information and it also offers cluster-
ing of different parts of the system based on
how they use the same terms.

Moose Availability

Moose is completely implemented in Visual-
Works Smalltalk under the BSD license: it is
free and open source software. A demo pack-
age containing the 3.1 alpha release can be
downloaded from:

www.iam.unibe.ch/∼scg/Research/Moose/
download/Moose31AlphaJun.zip

Further information can be obtain from the
official webpage located at:

www.iam.unibe.ch/∼scg/Research/Moose/

Acknowledgments. We gratefully acknowledge
the financial support of the Swiss National Science
Foundation for the project and “RECAST: Evolution
of Object-Oriented Applications” (SNF Project No.
620-066077, Sept. 2002 - Aug. 2006).


