Moose: an Agile Reengineering Environment

Stéphane Ducasse

ducasse@iam.unibe.ch

Introduction

Software systems are complex and difficult to
analyze. Reengineering is a complex activ-
ity that usually involves combining different
techniques and tools.

MOOSE is a reengineering environment de-
signed to provide the necessary infrastruc-
ture for building new tools and for integrating
them. MOOSE centers on a language inde-
pendent meta-model, and offers services like
grouping, querying, navigation, and meta-
descriptions.

Several tools have been built on top of
MOOSE dealing with different aspects of
reengineering like: visualization, evolution
analysis, semantic analysis, concept analysis
or dynamic analysis.

The Architecture of Moose

Moose uses a layered architecture as shown
in Figure 1.

Information is transformed from source
code into a source code model. MOOSE sup-
ports multiple languages via the FAMIX lan-
guage independent meta-model. In the case
of VisualWorks Smalltalk models can be di-
rectly extracted via the built-in parser. In the

Tudor Girba

girba@iam.unibe.ch

Michele Lanza

michele.lanza@unisi.ch

[Chronia - -] Van] —[Conan] [Baobab |
=~ -

N -
S~ aa”
CodeCrawler |

[Haoax] [

Tools

/'/' \\\

/'/. /'

Moose

Model
Repository

£

CDIF/XMI Interface

+

Basic
Analysis
Tools

Meta Meta
Descriptions

| VisualWorks Interface ”

Smalltalk”

External Parser

Figure 1: The architecture of MOOSE.

case of other Smalltalk dialects, the code has
to be first ported to VisualWorks and then
imported into MOOSE. For other source lan-
guages like C/C++, Java MOOSE provides
an import interface for CDIF and XMI files.

Every model contains entities represent-
ing the software artifacts of the target sys-
tem. Every entity is represented by an object,
which allows direct interaction and query-
ing of related entities, and consequently an
easy way to query and navigate the model.
MOOSE can maintain and manipulate several
models in memory at the same time via a

A Browser with

F'Ite"n%TOOI classes and a property

606 X Moose
Models Tools Nggation Help
=
Model Manager | Junt
B e &F&
o0 . [FAMXGasses(a36)
=@ Jun185 model = =
i@ FAMIXAccesses(768) FAMIXClassGroup (236 jffns) Actions =
-9 FAMIXAttributes(gs! EAMIXClass
0 FAMIXClasses(a36) — ; T
4 \ L class
FOF i Code Cravier _— 7
@ FAMIXImplicitV ariables(&! OaSS _— omanti I I
@ FAMIXInheritanceDefinitio o n d By SemanGes ==Sb: o
|5 F AMIXInvocations (66228 oot Jun: JuncharBand oiass 7o
Moose ©06 Rl EntiyInspector x: ar Open Enty Ver
unCi tract -)t ar_class 9 1
- JunChartabs Actions o o Enation Reset al Caches [
Property Value oI er D inspect Entity
NMA 69 Hapax Semantics. » entities: 500 Hidden entities: 436
NME s e
NMI 132 Open Entity Viewer L ks ik roup Description vaator
NMO 3 Navigation | Class p N
NOA 13 Reset all Caches -And GG,
NA ~on 4
NOC 3 Inspect Entity S ANde
NOM 72 WOC wew pr—
NOMP 12 Number of Method Protg WMCoverNOM ~<~ 1.1 _Highiight
NOPA L] Number of Public Attriby s the contextual menu to edit the expression Fitter Group
vty DescrpUon) Entity Evaluator| N \
aFAMIXClass hd - P -
== An entity can be interacted with
s B
using the contextual menu

Entity Inspector on a class and its properties

CodeCrawler displaying a System Complexity View.
| cxexa)

X| CodeCrawler - System Complexity View of Graph Jun185
CodeCrawler Moose Apply View Spawn View Selection Transformation Colors Layout CodEVolver
DR XoEFa MB v Q@ TIE BOH | -REN " F¥F
tem information
Wode [Class Root:Jun:JunChartAbstract belongs To Model Jun185]
width TOATTS Teight | WOM 172 Tolor T WIOC 1602 XPos 10 VPes 70
Inspect Figure
Figure Operations... >
Display Edges.. >
FAMIXGass >
Inspect item
Inspect Entity
EditzAdd Comment
Browse Source File
‘Spawm Named Giass Blueprint -
€) Browse Cass >
223 otes, 206 Euges - 0 setected Hodes
L

CodeCrawler displaying a Hierarchy Evolution View.

" T " "
CodeCrawler Moose Apply View Spawn View Selection Transformation Colors Layout CodEVolver

ODd EoEFamiB £ Qaa TLE £
tem information
Node

R N FE

[Root:Jun:JunOpenGLPerspective
Wadth E_FOM 4T Teight | E_WNOSpers 1 242 Color TAGETT0

3

*XPos T

T CIENT T

_.W!F wabLdp &l
Inspect Figure

Fgure Operations... b

Van &

Display Edges.. »

e ST
T R T —
CodeCrawler

Inspect Entity Open Entity Viewer

Inspect Entity
iagram | |
e Aeas — ‘
JunEdge ila :2un::JunEdge (10) Actions 5 |
jazégg: © | Wabstractversion NOM |[Property Value :
v V| JJunoos - 20] | ||- 0 N S
<« Effctan N6ig pper Bound:~ [l Lover BouriSI v | s Jun0Z5 - iz :ggigatdag\asw |
261 | Juno4s - 4)_GodClas 152
— inooe Lopoc 0
Jun105 - ADD_NOM 36
N ADD. 0C
:: B ‘ ADD:“LMC 234
Jun185 - T~ 56 ADD_WMSG 31
Jun185 - T~ 56 ADD_WNOC 0
(ADD_WNOS 130
Shown entities: 10 Hidden entities: 0 AEEDataClac0.N88ANS: T
005 025 045 085 085 105
]
Diagram Viewer showing History Inspector viewing the versions of a class
the evolution of two properties. and how a property evolved

Figure 2: Screenshots of M0OOSE, CodeCrawler and Van.

model repository. Every entity is described
by a meta-description, which is then used by
the environment to display user interfaces or
load/save entities. These meta-descriptions
are extensible by other tools and are used by
different tools. Examples of the supported
meta-descriptions are: description of related
entities, menu, description of properties.

MOOSE also provides basic tools that use
the are generic by using the meta-descriptions
(see Figure 2): Browser, Entity Inspector and
Filtering Tool.

Tools Built on Top of Moose

CodeCrawler. CodeCrawler is a visual-
ization tool implementing polymetric views
which is based on a graph notion where the
nodes and edges in the graph can wrap the
entities in the model. For example, in Fig-
ure 2 we see a screenshot of CodeCrawler dis-
playing a hierarchy of a system called Jun. In
Figure 1 it is shown that CodeCrawler is used
by different tools for different visualizations.

ConAn. ConAn is a concept analysis tool
and its target is to detect different kinds of
patterns in the model based on combining el-
ements and properties. ConAn uses Code-
Crawler for visualization purposes and sup-
ports analyses like: X-Ray views for under-
standing the internal of classes, identification
of recurring code patterns, and views for hi-
erarchy understanding.

Van. Van is a tool for analyzing the evo-
lution of systems. At its core, it defines the
Hismo meta-model which is based on the no-
tion of history. In Figure 2 we show how
Van uses CodeCrawler to display the evolu-

tion of the class hierarchies in the Jun sys-
tem. Van offers other analyses like history
measurements, change characterization.

Chronia. Chronia is a tool that bridges
MoOSE with versioning systems like CVS
and it enables analyses of how developers
change the system.

TraceScraper. TraceScraper analyzes
the dynamic traces from different perspec-
tives. For example it offers measurements
and visualizations for dynamic traces.

Hapax. Hapax is a semantic analysis tool.
It makes use of the comments and names of
the identifiers from the code to recover the
domain information and it also offers cluster-
ing of different parts of the system based on
how they use the same terms.

Moose Availability

MOOSE is completely implemented in Visual-
Works Smalltalk under the BSD license: it is
free and open source software. A demo pack-
age containing the 3.1 alpha release can be
downloaded from:

www.iam.unibe.ch/~scg/Research/Moose/
download /Moose31AlphaJun.zip

Further information can be obtain from the
official webpage located at:

www.iam.unibe.ch/~scg/Research/Moose/

Acknowledgments. We gratefully acknowledge
the financial support of the Swiss National Science
Foundation for the project and “RECAST: Evolution
of Object-Oriented Applications” (SNF Project No.
620-066077, Sept. 2002 - Aug. 2006).

