Power Laws in Smalltalk

Michele Marchesi, Sandro Pinna, Nicola Serra, Stefano Tuveri

Dipartimento di Ingegneria Elettrica ed Elettronica, Universita di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy
{michele,pinnasandro,nicola.serra,stefano.tuveri} @diee.unica. it

Abstract

Many real systems have been described as complex networks, where nodes represent
specific parts of the system and connections represent relationships among them.
Examples of such networks come from very different contexts. Traditional theories
suggest to represent complex systems as random graphs, according to the models
proposed by Erdés and Rényi. However, there is an increasing evidence that many
real world systems behave in different ways displaying scale-free distributions of
nodes degree. Random graphs are not suitable to describe such behaviors, thus new
models have been proposed in recent years. Recently, it has emerged the interest
in applying complex network theories to represent large software systems. Software
applications are made of modules and relationships among them. Thus, a repre-
sentation based on graph theory is natural. This work presents our study ! in this
context. We analyzed four large Smalltalk systems. For each one we built the graph
representing all system classes and the relationships among them. We show that
these graphs display scale free characteristics, in accordance to recent studies on
other large software systems.

Key words: software graphs, smalltalk, power-laws, scale-free networks, software
architecture

1 Introduction

In recent years, many studies have been carried out on the application of
complex networks theory to physical, biological and human phenomena. In
fact, many systems can be described as complex networks, whose nodes repre-
sent the elements of the system, and edges represent the interactions between
them. Examples of such systems are living systems, whose nodes are macro-
molecules with different functions, connected through chemical links; the stock

1 This study is part of MAPS research project (Agile Methodologies for Software Production, funded by

FIRB research fund of MIUR.)

ESUG Conference 2004 Research Track (www.esug.org)

market, where many traders are connected through information and opinion
exchanges; the Hollywood movie system, where stars take part together in a
movie; the Web, where pages link other pages. Such networks grow and evolve
increasing their complexity in an apparently disordered way.

Using the classical random graph theory developed by Erdés and Rényi [10][11]
to model such systems looks sensible, but most of these systems in fact behave
according to laws significantly different from those predicted by Erdos and
Rényi theory.

More precisely, there is increasing evidence that several real networks behave
as small worlds, simultaneously showing a short average minimum length path
and a high clustering behavior [16]. Moreover, many real networks show inter-
esting laws in the distribution of the number of links connected to a node. The
tails of such distributions follow a power law, that is a significant deviation
from the Gaussian behavior that would be expected if links were randomly
added to the network [3]. The meaning of the term small worlds and the dif-
ference between power law and gaussian law will be clarified within the next
section.

Surprisingly, such properties are common to very different real systems. This
suggests that the modeled behaviors are independent of the particular nature
of the represented real system. By the contrary, it seems like these are general
and universal behaviors which raise as a consequence of the sole complexity
of the system.

Large software applications are considered to be among the most complex
artifacts ever produced by man [6], and consequently are good candidates to
be modeled as complex networks, and to be studied with complexity theory.
This is particularly true for object-oriented systems, where objects and classes
are natural candidates to be represented as nodes, and the various possible
relationships between them — such as inheritance, instantiation, composition,
dependence — are represented as arcs connecting nodes. Thus, it is natural to
try to describe such systems by complex systems theory models. Very recently,
some studies have been performed on software systems showing that run-time
objects [13] and static class structures of object oriented systems are in fact
governed by scale free power law distributions [14][15]. Other studies have
been performed by Myers [12] and Wheeldon and Counsell [17], leading to
similar results. Most of these studies of complex software systems are based
on C++ and Java code.

In this paper we present a study on the Smalltalk system, a very complex
software application that is considered the most pure object-oriented system.
Namely, we study the Squeak [9] and VisualWorks [8] Smalltalk implemen-
tations. The dynamic typing nature substantially differentiates Smalltalk by

other languages such as C++ and Java. This makes the study of Smalltalk
systems particularly interesting. Accordingly to our previsions and similarly
to other software systems developed using different languages, we will show
that Smalltalk systems display link distributions whose tails follow a power
law. We think that this approach could be an important starting point to bet-
ter understand the nature and evolution of large software systems. Therefore,
with this paper we want to suggest a new point of view for reviewing well
known properties of software systems and for leading to new results that are
not reachable with the classic software engineering measurement approaches.

2 Small Worlds and Scale Free Networks

Traditionally, complex networks have been described as completely random
or completely deterministic. Only recently it has been shown that many real
technological, biological and social networks lie somewhere between these
extremes. Erd6s and Rényi pioneered the study of the behavior of random
graphs. According to their model, a “random graph” is made starting from a
set of n nodes and connecting each pair independently with a given probabil-
ity p. Random graphs exhibit many interesting properties, depending on how
large is the number of nodes n, and on the connection probability p. The prob-
ability distribution of the nodes degree, k in a random graph with n vertexes
and z connections is the well-known Poisson distribution:

k. —z

m= () o0 2 0

where the second approximation becomes exact as the number of nodes n
becomes very large. Watts and Strogatz [16] observed that a very important
property of random graphs is the small value for the average minimum length
path, coupled with the low clustering coefficient. In a graph, the minimum
length path between two nodes is the shortest path of consecutive edges con-
necting the two nodes. The average minimum length path is the average of such
value taken among all possible node pairs. The clustering coefficient of a graph
is a measure of how clustered, or locally structured, a graph is. Specifically, if
node 7 is linked to K; neighbor nodes, then we define the clustering coefficient
for node i, C;, as the fraction of the total possible w arcs that are real-
ized between i’s neighbors. Empirical evaluation of many real networks shows
that they are characterized by a small value of the minimum length path,
and by a large clustering coefficient. This means that random graphs are not
suitable to model these real-world networks. Watts and Strogatz defined as
small worlds, the networks characterized by a small average minimum length
path, and by a large clustering coefficient, and proposed an interesting method

to build small words networks starting by a lattice network. The other main
obstacle to apply Erd6s and Rényi theory to real networks is the empirical
observation that the predicted Poisson distribution of the nodes degree given
in equation 1 does not fit the observed nodes degree distribution of a great
number of real technological, social and biological networks. Barabasi and Al-
bert [3] showed how this incongruence between the random graphs theory and
real networks is due to two main factors not accounted for by the Erdds and
Rényi model:

e Real networks expand continuously by the addition of new vertexes
e Connection between nodes are preferential rather than independent

The above conditions are demonstrated to be sufficient conditions for display-
ing a power law tail in the distribution of the node degrees:

Pr X k’_ﬂ{ (2)

The theoretical model provided by Barabasi asserts the value for the exponent
to be v = 3. Empirical studies on real networks such as the Web, the North
American power grid, the Hollywood actors network and others, display values
for the exponent very close to the theoretical .

It is very surprising how many real systems modeled as networks reflect this
power law distribution in accordance with theoretical evidence. This suggests
that many real systems share common properties and behaviors in their struc-
ture, which are independent of the particular nature of the system itself. Those
properties seem to be related exclusively with the complexity of the system
modeled. Software systems play an important role in this context, as they are
obviously characterized by a high level of complexity.

3 Software Applications as Complex Systems

Software applications and architectures have become ever larger and more
complex over the past years. So, it is sensible to apply complex systems and
graph theories to model and to study large software applications. The study of
software systems as complex networks has a great scientific interest. It is ac-
knowledged that software networks play a special role in the context of random
networks theory, as it seems reasonable that the small world and scale-free sig-
nature origin from different factors compared to other real networks. In fact,
software is built up out of many interacting modules and subsystems at many
detail levels (methods, classes, hierarchies, libraries, etc.), and good software
is developed following collective and collaborative designs, design patterns and

optimization principles, rather than an explicit preferential attachment. This
suggests an alternative scenario for generating scale-free networks, which is
more related to optimization rather than to Barabasi hypothesis[14]. This en-
forces the idea that the power law shape of degree distribution tails describes
general behaviors of complex networks.

Moreover, the analysis of software systems structure and evolution as complex
networks could also be of practical interest, as it might provide an alternative
perspective able to help a better understanding of the mechanisms ruling
software production or the relationships among network structure and software
quality. For instance, an entire new bunch of metrics computed on the program
graph could be introduced, and correlated with external software metrics.

One of the first studies of this kind[13] has shown that the graphs formed
by run time objects, and by the references between them in object-oriented
applications are characterized by a power law tail in the distribution of node
degrees. Valverde and Sole[14][15] found similar properties studying the graph
formed by the classes and their relationships in large object-oriented projects.
They found that software systems are highly heterogeneous small worlds net-
works with scale-free distributions of connections degree. Wheeldon and Coun-
sell[17] performed similar studies on Java projects. Myers[12] found analogue
results on large C and C++ open source systems, considering the collaborative
diagrams of the modules within procedural projects and of the classes within
the OO projects. He also computed the correlation between complexity met-
rics and topological measures, reveling that nodes with large output degree
tend to evolve more rapidly than nodes with large input degree.

Our study is a contribution to the open issues quoted above. This paper in-
troduces a procedure for building the class graphs of a group of Smalltalk pro-
grams, and presents the related results. Smalltalk language provides a powerful
environment to easily build and analyze graphs representing its own classes.
Moreover, the dynamically typed structure of the language adds more interest
as it represents a fundamental difference with respect to other related studied
languages. On the other hand, for the same reason, it is hard to statically
resolve all class relationships.

4 Building the Smalltalk Graph

A software system is made of modules and relationships between them. More
precisely, a software application developed according to the object-oriented
paradigm is made of classes and well defined relationships between classes.
Representing such a software system as a graph is natural. In this graph, each
node represents a class within the system, while the arcs between nodes repre-

sent the relationships among classes. An arc links a couple of nodes, one rep-
resenting the starting class, and the other the ending class. The graph is thus
an oriented graph. An arc has also a weight, which is a measure of the degree
of the relationship between the two classes. While there may be many kinds
of relationships between classes, for the sake of simplicity, in this study we
have considered just two kinds of relationships: inheritance and dependence,
each one giving a different contribution to the arc weight. The inheritance is
represented by an arc with unitary weight, from the subclass to the superclass.

As regards dependence, we say that class A depends on class B when one of
the following conditions holds:

e class A has an instance variable whose type is B (composition);

e a method of class A has a variable (parameter or local variable) whose type
is B;

e an object of class B is obtained by a method call, or created, inside a method
of class A.

The dependence analysis must consider that Smalltalk is not a typed language.
It is a dynamic, implicitly typed language where objects, not variables, carry
type information. This frees the programmer from declaring variable types, but
embeds less information into the source code. None of the three conditions
reported above can be easily tested by an analysis of Smalltalk code. We
observe, however, that having access in the code of a method to a variable
of a given class is significant only if one or more messages are sent to this
variable. So, we define that class A depends on class B if a method of class
B is called from within a method of class A. If the considered method has
only one implementor, class B, the dependence link is clearly unambiguous. If
the method has more than one implementor class, say n, it is not possible to
ascertain with a static analysis which one is the right one.

In this situation, we decided to introduce a dependency towards all imple-
mentor classes, weighting such a dependency with weight 1/n. If a method
of class B is called by more than one method of class A, or more than once
within the same method of class B, we introduce weighted arcs for every call.
Inheritance is not considered in the dependency analysis. For instance, let us
suppose that class C is subclass of class A, that class D is subclass of class B,
and that a method of B — which is not overridden in class D — is called inside
a method of A, which in turn is not overridden in class C. At run time, it
may be possible that an object belonging to class C calls the method, and/or
that such a method is in fact executed on an object belonging to class D.
Nevertheless, in this case only a dependence between class A and class B is
recorded. Note that this issue holds also for typed languages, such as Java or
C++, when dynamic binding is used.

In conclusion, our graph is a collection of nodes:

G= {Nz‘}izl..Nc (3>

where N, is the total number of classes within the represented software system.
Thus, the graph contains one node for each system class C;. A node N; has a
collection of links, each representing a relationship that the class represented
by N; has with other classes in the system. Links, or arcs, are pairs of nodes
representing respectively the starting and the ending class:

Lij = (Ni; N;) (4)

Alink L;;, carries also a weight that we indicate as W (L;;). Now let’s introduce
the symbols we use for representing methods, messages and implementors:

M(C;) = {methods of the class C;}

S(m) = {messages sent insidem}, m € M(C;)

P(s) = {implementorsof messages},s € S(m)
dim(P(s)) = number of implementors of message s

We define the weight of a link as the sum of related dependence, Wy, and
inheritance, Wj,, contributions:

W (Lij) = Waep(Liz) + Winn(Lij) (5)

Wdep(Lij) = Z Z IS(O]) (6)
meM(C;) seS(m) dzm dim(P(s))
1.(C.) = 1if Cj€P(s)(Cjis animplementorof s) 7
S(J) — 10 otherwise ()
1if C; isthedirect superclassof C;
VVinh (LZJ) 0 otherwzse ? (8)

Now we can define both the input degree, and output degree of node N;:

Nc

output Degree(N;) = Y W (L;;) (9)
=1

input Degree(N. Z W (L;;) (10)

The graph built in this way reflects the relationships between the classes, using
in the least biased possible way the information that can be inferred by static
analysis of a Smalltalk system. The input degree of a class is directly linked
to the usage of this class in the system.

We performed also another measurement on Smalltalk system, considering
the distribution of classes implementing a method. For each method selector,
M, we easily found in the system its implementors, P(M), and their number,

dim(P(m)).

5 Analyzing Smalltalk Classes

Once defined the graph model used to capture the structure of the software
system under study, we need to build an analyzer able to generate such a graph,
starting from the software system. With strong typed languages, this would
be accomplished by parsing the source code, recognizing class and variable
definitions, and generating the graph, as in [17]. Another approach is to use a
CASE tool able to reverse-engineer the code, building the related UML class
diagram [5]. The code analyzer can then take advantage of the navigation
API of the CASE tool, to explore class relationships and to build the graph.
Following this approach, it is possible also to directly analyze UML design
models. This is the approach followed in [15].

With Smalltalk, we can take full advantage of the introspection of the lan-
guage. The whole system is accessible from within itself, and no source code
parser or reverse engineering is needed. Moreover, Smalltalk is endowed of pow-
erful query methods able to return useful information, as for instance the set
of all the classes of the system, the set of classes implementing a given selector,
the set of messages sent within a given method, and so on. We remember that
in Smalltalk everything is an object, including the classes, the methods, the
message calls themselves. We analyzed two dialects of Smalltalk — Squeak (ver-
sion 3.5), an open-source implementation [9], and VisualWorks (version 7.2), a
commercial implementation which is freely available for non-commercial uses
[8]. The system classes and methods to perform queries about the system dif-
fers between Squeak and VisualWorks, but they are substantially equivalent.
We defined a simple data structure able to hold the needed information on the
graph describing the system. Figure 1 shows the UML class diagram depicting
this structure. A Graph is a collection of nodes; a Node has a related class
and a collection of links. A Link has a startNode, an endNode and a weight.

To give an insight on how the dependence analysis was performed, we shortly
describe its implementation in Squeak. The main classes involved in the com-
putation are SystemNavigation, Class and CompiledMethod. The method

Graph Hode Link

nodes |heClassiClass -InkE | oot ode:Node
> g | endilodeMode
b T 1.+ | -weightfost

Fig. 1. The graph structure

allClasses of SystemNavigation returns the collection of all classes in the
system. For a given class, the method selectors returns all selectors of that
class. A selector is a Symbol (a kind of String) representing a method signature.
The whole method, instance of class CompiledMethod, can be obtained
by sending the message compiledMethodAt: aSelector to the class. The
CompiledMethod class implements the method messages which returns
the collection of all messages sent inside the CompiledMethod. A message
is in turn a Symbol representing the selector of the corresponding invoked
method. The SystemNavigation class implements the method allClasses-
Implementing: aMessage which returns a collection of all classes imple-
menting the given message. In this way, it is possible to navigate the system,
building the graph described in the previous section.

A similar approach has been adopted for Visual Works even if the involved
classes are not the same in the two systems. For example in VW we use the
class Refactory.Browser.BrowserEnvironment instead of SystemNav-
igation, and so on. The graph construction has taken about four hours in
Squeak (1797 classes), and three hours in VisualWorks (2227 classes) on a PC
running Windows, powered by a 2.6 GHz processor.

6 Results

Our study has been structured across the following points:

Building of the class relations graph

Computing the survival distributions of the input degree and output degree
Plotting the survival distributions on a Log-Log plot

Discussing the results

Our main purpose is to verify that the distributions tails are better fitted by
a power law rather than by the Poisson distribution typical of the random
graphs. Moreover, we want to interpret the results in a less general context
and from the more practical point of view of the software developer.

Namely, we analyzed four Smalltalk systems:

e Squeak

e Visual Works with three different parcels installed:
- Base image
- Base image plus Jun parcels
- Base image plus VisualWave parcels

Jun is a large 3D graphical application. VisualWave is the VisualWorks ex-
tension to support the development of Web applications. Note that the Vi-
sualWorks parcels are analyzed together with the base image, so the results
referring to these cases are clearly correlated to the results referring to the
base image.

6.1 Distributions of input degree and output degree

Figure 2 and figure 3 display the distribution tails of the input degree and
output degree respectively for VisualWorks and for Squeak systems. More
precisely, we computed the survival distributions and plotted them in a log-log
plot. The survival distribution depicts the probability that a value exists that
is greater than the current one. The log-log plot performs a transformation of
the power law function into a straight line function, with slope equal to the
power exponent of the original curve. This allows to visually better verify the
presence of a power law and to estimate the v coefficient.

As expected, the plots show that distribution tails are actually well fitted by a
power law. Table 1 shows the fitted v exponent of the power law distributions
obtained for each system graph, compared with the number of classes of the
analyzed systems. The power exponent 7 of the distributions is quite close
to the theoretical value (7 = 3) obtained by Barabasi and it is coherent
to the empirical values (2 < v < 4) obtained for many real networks. An
higher exponent denotes a tail decreasing quicker. A small exponent denotes a
“fatter” tail, that is a bigger deviation from the behavior of a Gauss or Poisson
distribution.

Despite this general result, which is in fact shared by various kind of different
real networks, our main interest is to interpret its meaning in the specific con-
text of software systems. The number of outgoing links of a node is a measure
of how many messages are sent from within the methods of the corresponding
class. A high value of the number of outgoing links denotes that the class per-
forms many message calls from within its methods. This can be considered also
as a measure of the coupling between classes. Thus, a power law distribution
with fat tails is a clue that the system is characterized by a certain number
of classes with an high level of coupling, while the bulk of the classes tends

10

to be much less coupled. This interpretation is supported by other previous
studies. For example, Chidamber and Kemerer [7] and Basili [4] found similar
distributions for coupling metrics.

Note also that, since the output degree of a node is not divided by the number
of methods of the related class, it is clearly proportional to the number and
size of methods of the class. Consequently, the power law behavior seems to
be related also with the distribution of class sizes, and with the fact that,
when a new method is added to the system, it is more likely that it belongs
to a class that already has many methods. However, both high coupling and
big classes are not considered good object oriented programming style. A
good object oriented system should be composed of many cohesive classes, at
different detail levels, each one focusing on a single task, and endowed with
a few, short methods. Our empirical analysis of the Smalltalk system shows
that this is not the case, because the distribution of the number of outgoing
links decays with a power law. This observation is confirmed by other studies,
showing the same behavior in Java applications [15].

A broad analysis of many OO systems is outside the scope of this paper.
However, these behaviors clearly point out an interesting research direction,
suggesting to perform more detailed analysis on this indicator, for instance
analyzing separately system classes and classes written by programmers, and
analyzing the values of the outgoing links power law degree in systems with
different quality rating, or before and after an extensive refactoring.

The other main indicator we examined is the input degree, which gives a
measure of how a certain class is referenced by other classes in the system.
The shape of the distribution is due to the fact that in Smalltalk system, there
are “service” classes that are used by almost other classes. Classes such as
Object, the Collection and the Magnitude hierarchies, come immediately
to mind. There are also classes which are fairly used, both in the system and
in specific parcels, while most other classes are rarely used. The usage rate
is certainly not random. This behavior suggests the hypothesis that when
defining a new class, it is likely to be subclass of a class already having more
subclasses, and that when writing a new method the probability to send a
message implemented in another class is roughly proportional to the number
of sending of that message in the system. In fact, this probability is more than
proportional to this number, as the coefficient values smaller than 3 suggest.

6.2 Distributions of method implementors

We also computed the distribution of the method implementors on the Visu-
alWorks system, respectively for the base image and for the base image with

11

_3t |

s _

6l |

7+ -

_8 ! ! ! ! ! ! ! !
3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Fig. 2. Log-Log plot of input degree survival distribution computed on VisualWorks
system. Similar plots are obtained for other analyzed systems: Squeak, VisualWorks
with Jun and VisualWorks with Visual Wave.

inDegree outDegree number of classes

Squeak -2.07 -2.3 1797
Visual Works -2.28 -2.73 2227
Jun -2.39 -2.55 3022
Visual Wave -2.26 -2.53 2648

Table 1
Power Law exponents for input degree and output degree distributions.

Jun and VisualWave parcels loaded. Figures 4 and 5 show the log-log plots of
the survival distributions for the number of implementors of each method for
VisualWorks base image and Jun, together with best-fit Poisson distribution
of the same data.

Table 2 shows the exponent v of the power law distributions obtained for each
implementors graph, compared with the total number of considered methods.

12

4t -

35 4 45 5 55 6 6.5 7 7.5 8 8.5

Fig. 3. Log-Log plot of output degree survival distribution computed on Squeak
system. Similar plots are obtained for other analyzed systems: VisualWorks,
VisualWorks with Jun and VisualWorks with Visual Wave.

Clearly, also the tail of these distributions show a power-law behavior, with
exponent lying in ranges similar to those of previous distributions.

This behavior denotes that, in the Smalltalk system, there are methods with
the same name implemented in many classes, while most methods are imple-
mented in one or few classes. This means that, when defining a new method,
the probability that its name is the same of a method already present in the
system is roughly proportional to the number of times that method is imple-
mented in different classes. We know that it is good programming practice to
give the same name, in different classes, to methods performing the same kind
of service. This seems to be confirmed by the behavior of these distributions.

7 Conclusions and further works

In this paper we have studied distribution laws related to object-oriented class
relationships of large system and application libraries of a “pure” object-

13

3

10

Fig. 4. VisualWorks, log-log plot of survival distributions of the number of implemen-
tors of each method. The best-fit Poisson distribution of the same data is also shown.

oriented system as Smalltalk. Not unlike very recent findings by others on
different object-oriented designs and systems, we found that key statistical
distributions of the class-relationship graph exhibit scale-free and heavy-tailed
degree distributions qualitatively similar to those observed in recently stud-
ied biological and technological networks. Moreover, these distributions show
strong regularities in their characteristic exponents.

Following Wheeldon and Counsell [17], we believe that these regularities are
common across all non-trivial object-oriented programs. This is a strong impli-

—~ Number of Methods

Visual Works -2.56 23883
Jun -2.27 33489
Visual Wave -2.54 27780

Table 2
Power Law exponent for the distributions of the number of implementors of each
method

14

3

10

Fig. 5. VisualWorks with Jun parcel loaded, log-log plot of survival distributions of
the number of implementors of each method. The best-fit Poisson distribution of
the same data is also shown.

cation indeed, and could show the path of future research along the following
directions:

e What are the statistical mechanisms involved in software development, and
how it is possible to model them, accounting for the hierarchical nature of
software design, and for the relationships among network structure, object
interactions, and system evolution?

e During system development, when these scale-free patterns do emerge? Is it
possible to develop a growth theory of software graphs, which in turn could
be used to predict the dimensions of future systems and to estimate the
complexity of developing and maintaining those systems?

e [s it possible to correlate statistical graph properties with software quality?
What about the impact of refactoring on the software graph?

e Are there differences in statistical graph properties between open-source
software, which is developed by many programmers in a somewhat destruc-
tured way, and commercial software developed following a strict process by
full-time developers?

e Are there differences in statistical graph properties between software de-

15

veloped in the agile way, with short iterations, test-driven development,
continuous integration and extensive refactoring, and software developed
with waterfall-like approaches?

Answering to these questions using an innovative approach such as the aug-
mented random graph theory could break new grounds in software engineering,
and could be very valuable.

As a further conclusion, we agree with Valverde [15] that software systems
present novel perspectives also to the study of complex networks. Software
must be both functional and evolvable, and unlike biological systems it is to
a large extent designed in advance. Traditional software does not emphasize
redundancy to support fault tolerance, but it presents other degrees of free-
dom that play a central role in supporting evolvability, such as modularity,
layering, cohesion, genericity, polymorphism, and collaboration. Are some of
these degrees of freedom relevant also to the organization and evolution of
biological networks? The study of software systems from the new perspective
of statistical graph properties may be also useful in suggesting novel insights
into collective biological function.

16

References

[1] Réka Albert, Hawoong Jeong, Albert-Lészl6 Barabasi: Attack and Error
Tolerance of Complex Networks. Nature Vol. 406, pp 378-382 (2000)

[2] Albert-Laszl6 Barabasi: Linked: the new science of networks. Persus Press, New
York (2002)

[3] Albert-Laszl6 Barabasi, Réka Albert: Emergence of scaling in random networks.
Science Vol. 286, pp. 509-512 (1999)

[4] Victor R. Basili, Walcelio L. Melo, A Validation of Object-Oriented Design
Metrics as Quality Indicator, IEEE Transaction on Software Engineering,
Vol.22; No. 10, (October 1996)

[5] Grady Booch, Ivar Jacobson, James Rumbaugh: The Unified Modeling
Language User Guide. Addison-Wesley, Reading, MA, (1999)

[6] Frederick P. Brooks: The Mythical Man-Month. Addison-Wesley, (1995)

[7] Shyam R. Chidamber, Chris F. Kemerer, A Metric Suite for Object Oriented
Design, IEEE Transaction on Software Engineering, Vol.20, No. 6, (June 1994)
[8] Cincom Corp., VisualWorks Application Developer’s Guide. Cincom, (2004)

[9) Mark J. Guzdial: Squeak: Object-Oriented Design with Multimedia
Applications. Prentice-Hall, (2000)

[10] Paul Erdés, Alfred Rényi: On random graphs.I, Publ. Math. Debrecen 6, pp.
290-291, (1959)

[11] Paul Erdés, Alfred Rényi: On the Evolution of Random Graphs.Publ.Math.
Inst. Hungar. Acad. Sci. 5, pp. 17-61, (1960)

[12] Christopher R. Myers: Software systems as complex networks: structure,
function, and evolvability of software collaboration graphs. Phys. Rev. E 68,
046116 (2003), preprint at cond-mat /0305575

[13] Alex Potanin, James Noble, Marcus Frean, Robert Biddle: Scale-free geometry
in Object Oriented programs. Victoria University of Wellington, New Zeland,
Technical Report CS-TR-~02/30 (2002)

[14] Sergi Valverde, Ramén F. Cancho, Richard V. Sole: Scale-Free networks from
optimal design, Europhisics Letters 60, pp. 512-517 (2002)

[15] Sergi Valverde, Richard V. Sole: Hierarchical small worlds in Software
Architecture. Submitted to IEEE Transactions of Software Engineering (2003)

[16] Duncan J. Watts, Steven H. Strogatz: Collective dynamics of ’small-world’
networks. Nature Vol. 393, pp. 440-442 (1998)

[17] Richard Wheeldon, Steve Counsell: Power law distributions in class
relationships.Proc. Third IEEE Int. Workshop on Source Code Analysis &
Manipulation, Amsterdam, The Netherland, (Sept. 2003)

17

