
Parcels: a Fast and Feature-Rich Binary

Deployment Technology

Eliot Miranda a David Leibs b Roel Wuyts c

aCincom Systems
bNeometron, Inc.

cDecomp, Université Libre de Bruxelles, Belgium

Abstract

While development of a software system is important, it is also very important to
have suitable mechanisms for actually deploying code. Current state-of-the-art de-
ployment approaches force the developer to structure the code in such a way that
deployment is possible, thereby severely inhibiting reuse and comprehensibility of
the system. This paper presents parcels, an atomic deployment mechanism for ob-
jects and source code that supports shape changing of classes, method addition,
method replacement, and partial loading. The key to making this deployment mech-
anism feasible and fast is a pickling algorithm that allows the unpickling to be done
iteratively instead of with a recursive descent parser. Parcels were developed for
VisualWorks Smalltalk, and have been the default deployment mechanism the past
years for thousands of customers.

Key words: Code Deployment, Packaging, Pickling, Smalltalk

1 Introduction

This paper considers deployment technologies that are vehicles for storing
objects and their behaviour that permit their transportation between and im-
portation into systems. From this perspective deployment technologies are an
essential part of current programming practice. They provide a medium and a
mechanism for upgrading, distributing or selling software, a means of physical
sharing to reduce disc and memory footprint, and of logical sharing to simplify
updating of multiple programs, or incremental updating of a single program.

Such deployment technologies take a number of forms such as source files,
binary programs, binary shared and unshared libraries, and, in the OO world,
many pickling formats [1,2,3,4,5]. A pickling format is a recursive grammar

ESUG Conference 2004 Research Track (www.esug.org)



for defining graphs of objects. An object graph is traversed and a stream
of tokens in the grammar is produced that describes the graph. This is the
pickled representation of the graph and is typically stored in a file (but can
for example also be used to transfer objects across the network). A parser for
the grammar can be used to reconstruct an equivalent graph, unpickling the
objects therein. A first problem that often occurs is that the grammars encode
a straightforward flattening of the elements in the graph, and consequently
show a significant parsing overhead when they are read back.

A second problem shared by pickling formats is that at time of use all prereq-
uisites of an object must be present for the object to be successfully restored.
For example, a Java class file can only be loaded if its super class is already
present and has a definition that matches that expected by the class file. As
another example, a shared library linked against other shared libraries requires
that those other libraries are available. Because all prerequisites have to be
present, the system needs to be decomposable in a tree, whereas it really is a
–possibly cyclic– graph. This poses problems during development, where it is
sometimes needed to structure the code in such a way that it can be deployed.
For example, a visitor in Java cannot be deployed independently from the
classes it visits.

Parcels address the problems described above in two ways. First of all parcels
use a pickling format that eliminates the need for the recursive descent parser
that is normally used when unpickling. As a result the loading times are much
faster. Secondly parcels support references to objects outside of the parcel,
and, moreover, can be loaded even if not all prerequisites are present.

On top of that parcels can be unloaded (restoring the situation before they
were loaded), support partial loading and have sophisticated mechanisms for
solving loading and unloading problems, such as support to shape-change
classes, method additions, and method replacements.

In short, parcels are a very fast and flexible deployment mechanism that has
been enjoyed since the release of VisualWorks 3 by thousands of developers.

The rest of this paper is structured as follows. Section 2 starts by giving
an overview of parcels and the features they offer, and introduces the Color-

Editing parcel example used throughout the paper. Section 3 discusses pick-
ling formats, and the particular one used in parcels to speed-up the loading
process. Section 4 shows how parcels support the advanced loading and unload-
ing features such as redefinition of entities, method replacements and partial
loading. Section 6 validates the approach. Section 7 discusses problems with
the parcels and how we plan to address them in our future work. Section 8
shows how related work handles binary code deployment. Section 9 concludes
this paper.

2



2 Overview of Parcels

Parcels are a binary code deployment technology for VisualWorks Smalltalk
that improves upon older technologies by being faster and much more flexible
regarding loading and unloading. Parcels store arbitrary Smalltalk objects but
are oriented towards the storage of objects that represent the initialized state
of Smalltalk code modules. They allow the definition of namespaces, namespa-
ce-global variables, classes and methods. Note that methods can be defined
on classes defined in that parcel, but can also be defined on classes that are
part of the system the parcel is loaded in. When a method is added to an
existing class in the system, we call it a method addition. When a method
from a parcel replaces a method that already exists in the system, we talk
about method replacement.

Loading a parcel adds the definitions from the parcel to the system, and
unloading a parcel removes them. This is not without complications, because
of method additions, method replacements and class redefinitions. The system
has a sophisticated mechanism to ensure that code that was redefined by the
parcel gets restored when the parcel is unloaded.

The parcel system manages class initialization and ”uninitialization” auto-
matically. Parcels provide a set of optional configurable actions for perform-
ing arbitrary tasks at various times in the load/unload cycle of a parcel. They
include a set of prerequisite parcel names which are used to auto-load pre-
requisite parcels, and information such as a measure of foot-print and several
kinds of optional meta-information that can be browsed without loading the
parcel (such as version information, developer information or notes).

Parcels exist either as a byte stream, that may persist outside the system
(typically in a disc file), or as an object in the system. In the system they may
be under development, having never been written out, or loaded, in which
case they are also subject to further development. The in-system form of a
Parcel is an object that notes which code entities it defines, and various other
properties (like the parcel’s name, its prerequisites, version, comment, the
methods replaced by a parcel on load, etc).

Parcels are accompanied by an optional source file that holds the source code
for the binary code in the parcel. This source file is added to a registry of
current source files on load, and removed from the registry on unload. This
differs markedly from Smalltalk source file-ins where the filed-in source is
appended to the system’s changed source file, leaving a permanent side effect
if the code is removed.

This paper discusses how parcels achieve this set of features. The following
section introduces an example that will be used throughout the paper.

3



UISettings

...
 
 
 

Text

asParagraph
emphasisAt:
 
printOn:

SimpleDialog

MethodColorizer
methodText
...
doNode:
doReturn:value
...

ParserProgramNode-
Enumerator

ColorTextParser
isParsing
...
colorComments
parseMethod:in:
...

ColorToolDialog
cubeColors
...
changeBGColor
brightness
...

choseEditingColor
saveToFileAction
...

makeSelectorBoldIn:
ColorEditing

VisualWorks Base

Fig. 1. Figure showing the ColorEditing parcel, that defines three classes
(MethodColorizer, ColorTextParser and ColorToolDialog), some method ad-
ditions on the base class UISettings and one method replacement on class Text

2.1 Example: The ColorEditing Parcel

Visualworks Smalltalk is distributed as a base image, containing the most
commonly used features, in which parcels are loaded to extend this base image.
One of these parcels allows code to be displayed in colour, highlighting syntax
elements with colours. This changes the default behaviour implemented in the
base image, where only the selector of a method is displayed in bold, and the
method body is plain.

The ColorEditing feature is implemented as a parcel that provides a number
of classes that implement its behaviour, a number of extension methods that
integrate the settings a user can make in the existing Settings tool of Visual-
Works (allowing colour settings to be customized from a GUI by an end-user)
and one method replacement. The method replacement is needed to change
the existing method that displays the selector of a method in bold, to now
display it in the style the user desires. Figure 1 shows the ColorEditing parcel
in a graphical format. This example is used throughout the paper to show
concrete examples of parcel features.

3 Parcel Pickling Format

Parcels use a particular format to store an object graph in a file (called pick-
ling). This section discusses pickling of objects in general, and then shows the
format used by parcels that permits much faster loading.

4



ColorTextParser

#isParsing

Compiled-
Method

Method-
Dictionary#testing

ColorTextParser
class

ColorTextParser
>>isParsing

#[16 208 22 173 194 72 218 22 208 22 101]

1133

MethodDictionary
(#isParsing)

class

class

class

bytecodes

class

ByteArray

class

Class-
Organizer

('testing' 
#isParsing)

Symbol

class

class

source pointer

protocols

Fig. 2. Part of the object graph for class ColorTextParser, with a method isParsing:.

3.1 Current Formats for Pickling Objects

The goal of pickling is to store a graph where the nodes are objects, and the
arcs are references between the objects. The nodes are typed. Possible node
types depend on the language but typically include things like primitive object
types (integers, floats, characters, strings, etc) and arbitrary objects (vectors
of slots holding references to other objects in the graph, including their class,
etc.). Figure 2 shows a small part of the object graph for the ColorEditing
parcel from Figure 1, containing just some of the classes involved, and the
method isParsing: from class ColorTextParser.

Traditional pickling formats use a stream of bytes organized as a header fol-
lowed by a byte sequence that encodes an object graph according to a gram-
mar. The grammar is designed to allow unpickling to be done as a form of
bytecode interpretation. At each stage the interpreter decodes a portion of the
byte sequence to yield a node in the graph. Each type of node has a particular
bytecode analogous to a reserved word that introduces a phase in a program-
ming language grammar. At each state in the parse the interpreter dispatches
on the bytecode to determine how to interpret the phrase that follows and
creates the object encoded by the phrase. The result of the unpickling is the
object graph that was stored.

Typical optimizations for pickling formats encode common sub-ranges of the
integers with their own bytecodes, etc. These techniques have a lot in common
with those used for bytecoded language designs like Smalltalk itself. Although
significant in reducing the size of a pickled byte stream they don’t help to
reduce the significant overhead of interpreting the stream.

5



The big deficiency with respect to speed of the traditional pickling arrange-
ment is that it uses a recursive grammar. During the parse one may encounter
an object whose class has not yet been defined, so the reference to the class
will be a class definition phrase. The interpreter is faced with the difficulty
of reading ahead to instantiate the class before it can instantiate the original
object, and must be written as a recursive descent parser.

3.2 Pickling Objects the Parcel Way

As explained in Section 3.1, the object graph that needs to be stored uses
typed nodes. In the case of VisualWorks, the nodes can be of the following
type:

• primitive object: integer, float, character, string, etc.
• arbitrary object: vectors of slots holding references to other objects in the

graph, including their class)
• class definition
• method definition
• symbolic reference to objects imported from the loading environment. Note

that a symbolic reference to a class not only has the name of that class,
but also the complete format of the class, such as the names of its named
instance variables.

The pickling format of parcels relies on separating and ordering the descrip-
tions of each node from the description of the references that form the arcs of
the graph. Therefore the resulting file is divided into two big sections, preceded
by a header: the objects section followed by the references section. Figure 3
shows how the graph from Figure 2 is stored in a parcel. It omits the header
and full content of the pickled format for reasons of space.

Objects Section: The first section comprises a sequence of object descrip-
tions clustered by class. Within the first section objects are present in a specific
order. First come the symbolic references used to import the classes of all ob-
jects in the parcel whose class is not also defined by the parcel. Then come
those literals represented as byte vectors, i.e. byte and two-byte strings, byte
and two-byte symbols, byte arrays, floats, doubles, large positive and negative
integers, and fixed-point scaled fractions. These are typically the only kinds of
byte literals that occur in compiled methods. This is followed by information
describing the classes defined by the parcel.

Note that classes are sorted according to their loading prerequisites. By default
the loading prerequisite of a class returns the class’ super class, but a user
can extend this by overriding a method on the class’ metaclass to return
other prerequisites. A tool computes the transitive closure of the prerequisites

6



"refs to dependent classes"
'Kernel.Parser'
16406
22
'source'
'mark'
'prevEnd'
'hereChar'
'token'
'tokenType'
...
"strings, bytearrays, floats, ..."
'methodDict'
'Kernel'
'testing'
'isParsing:'
...
#[16 208 28 173 ... 208 28 101]
#[16 208 23 173 ... 208 23 101]
...
0.86
0.8
...
1291792260
1292108356
...

"Classes defined in parcel"
Kernel
Parser
'ColorTextParser'
16393
0
9
'superclass'
'methodDict'
'format'
'subclasses'
'instanceVariables'
'organization'
'name'
'classPool'
'environment'
16413
7
29
'source'
'mark'
'prevEnd'
'hereChar'
'token'
'tokenType'
...

"arcs"
1
2
Kernel.ColorTextParser class
Kernel
#UISettings
...
"Instances of indexed objects"
OrderedCollection
1
5
CompiledMethod
141
2
1
1
...
"compiled methods"
ColorTextParser>>isParsing:
...

Fig. 3. Part of the result from pickling the object graph of Figure 2. The first two
columns form the objects section, while the third one is the references section. We
added comments in bold to split the different parts of the sections.

relationship and does a topological sort on the set of classes to be written.
This class ordering can also be done at load time, but it can take as much as
one third of the complete load time for a parcel. Therefore we chose to do the
computation once and store this information in the parcel itself.

References Section: The second section contains the reference information
that encodes the arcs that connect the nodes. The reference information is in
the same order as the objects in the object table. The first few references are
those for the slots of the first object in the object table, followed by those for
the slots of the second object, and so on. The VisualWorks virtual machine
uses tagged pointers and encodes a 16-bit character set and a 30-bit signed 2’s
complement sub-range of the integers directly in object pointers. The reference
information is also organized as four-byte tagged pointers that similarly encode
either immediate integers, or immediate characters or the index of an object
in the object table.

The parcel system achieves the above ordering by making the parcel writing
process two-phase. The first phase determines the set of objects to be written.
In the case of the example this results in a set containing the classes defined in
the parcel (MethodColorizer, ColorTextParser, ColorToolDialog), objects
for each of their methods, objects referenced in the methods, etc. The second
phase clusters the objects collected in the first phase by class and writes them
out in the order described above.

7



Both phases are implemented as an extension of an existing VisualWorks
framework to trace object graphs (the ObjectTracer). The ObjectTracer

uses the Visitor pattern [6], and so the parcel format is open to arbitrary
extension. This is typically used for special purposes, for example by meth-
ods to collect their source code that should accompany the parcel file, or by
ExternalInterface classes to include extra information such as the names of
the external DLLs they provide interfaces to.

The advantage of this pickling format is that the unpickling can be done in
an iterative instead of a recursive way, while still not imposing a hierarchi-
cal structure from the outset. At the end of reading the file, the objects are
recreated. The following section explains this unpickling process in detail.

3.3 Unpickling a Parcel

The format described above is carefully organized to optimize load times. First
of all, the organization ensures that a recursive descent parser is not needed
since the class definitions are put before the instantiations of those classes. So
the interpreter can batch-up instantiations of all objects of a particular class.
As it instantiates objects they are placed in successive elements of an array
called the object table. This batching provides most benefit for common object
types (such as Strings or Symbols) that are the common literals of compiled
methods, and for compiled methods themselves.

Once the first section has been parsed the object table is completely popu-
lated with the objects that form the nodes of the graph. The graph is knitted
together by enumerating over the slots of each object in the object table, re-
solving its reference information into characters, integers or other objects in
the table. The routine that does this operates on a single object. The routine
is so simple that it is amenable to implementation as a virtual machine prim-
itive, but performance is so good that we have yet to deploy the primitive!
Performance comparisons are given in Section 6.

4 Applying a Parcel

Applying a parcel happens in several consecutive phases: the preload phase,
the load phase, the install phase and the postload phase:

• Preload Phase. The preload phase is where the system is set up to apply
a parcel. Prerequisite parcels are loaded, and preload behaviour defined in
the parcel is executed.

8



• Load Phase. During the load phase, the objects defined in the parcel are
restored. The load phase is done in its own context, so as not to disturb
the existing system. Hence at any time prior to installation the load can be
aborted and the system will not have been modified in any way.

• Install Phase When the load phase finishes successfully, the install phase
actually installs the objects defined by the parcel in the system, performs
class and global variable initialization and evaluates the parcel’s post-load
behaviour, if any. The installation phase is guaranteed not to fail, and is
effectively atomic.

• Postload Phase. This phase allows all loaded parcels to install previously
uninstalled method additions and replacements, and classes.

The next sections discuss the phases in detail, and especially the way load
problems are handled automatically by the loader.

4.1 Parcel Preload Phase

In the preload phase, it is checked whether the prerequisite parcels of the
parcel are already loaded. For each one that is not loaded, the system asks
whether it is ok to load the prerequisite, with an option to do so automatically.

The system also has two hooks that allow parcels to execute code before the
reading of the parcel starts (the preread hook) and before the actual loading
starts (the preload hook). This fine-grained mechanism allows to test various
conditions and to execute code at very specific intervals for those parcels that
need it.

4.2 Parcel Load Phase

Loading the parcel means unpickling the contents of the parcel, and adding
the resulting objects to a temporary context in the system. During the load
phase, problems can occur. For example, the ColorEditing parcel defines the
class ColorTextParser as a subclass of class Parser. When this class is not
present, there is a load error. Parcels provide the following advanced features to
automatically recover from certain load problems. The features are discussed
in more detail afterwards.

(1) The parcel attempts to define a namespace, global, class or static that is
already present in the system. This is handled by overrides.

(2) The parcel attempts to load a subclass of a class that has a different
shape then that it had when the parcel was written. This is solved by

9



shape changing classes to effectively update the code defined in the parcel
to take the new shape of the class into account.

(3) The parcel attempts to replace a method already present in the system.
For this situation parcels support method replacement;

(4) The parcel attempts to use a class not present in the system, either for a
method addition or to create a subclass. This is handled by partial loading,
which boils down to remembering the code that cannot immediately be
added.

We now discuss each of the solutions offered by parcels to handle these prob-
lems.

Redefinition Support

When a parcel defines a class, namespace or global that already exists, the
definition in the system is replaced by the definition from the parcel. Moreover
in the case of a class redefinition, existing instances are shape-changed to
conform to the parcel’s class.

Shape-Changing Classes The shape of a class is the named instance vari-
ables it defines. The shape of a class is important in Smalltalk, since Smalltalk
methods refer to named instance variables by integer offsets. Hence changing
the shape means that compiled methods have to be adjusted to make sure
that they still use the correct offsets.

For example, suppose that a new release of the VisualWorks base adds an
instance variable to the class Parser, and that a user loads the ColorEditing
parcel in this new version. The Parser class in the system then has a different
shape than the Parser class against which the methods were compiled. Hence
the methods in the parcel need to be updated to make sure they use the correct
offsets.

Such a change in definition can be detected because the shape of a class is
stored in the parcel file (see the top of the left column in Figure 3 that lists
the instance variables of class Parser). This information is used to compare
the shape for the class import in the parcel against the shape of the class
present in the system. When differences are detected the instances of classes
that have changed shape are simply remapped, dropping the values of lost
instance variables, and setting new variables to the value nil.

Method Replacement The example shows a method that is defined in the
ColorEditing parcel that replaces an existing definition of that method in the
system: method makeSelectorBoldIn: on class Text. Method replacement
simply replaces the method with the one defined in the parcel. However, the
original version of the overridden method is remembered by the system. When
a parcel is unloaded it can therefore put the original methods back in place,

10



as will be discussed in Section 5.

Partial Loading

When deploying code it might happen that a class needed to load a parcel
is absent. For example, the class ColorEditing adds methods to the class
UISettings, but a user that does not need a tool for editing system settings
could have removed this class. Another example is the class ColorToolDialog,
that subclasses a class SimpleDialog, which again might not exist. Without
support for partial loading, the ColorEditing parcel could not be loaded in
such a scenario. The only thing that the user could do is to try to figure
out the dependencies and create stubs for the needed classes, a tedious and
difficult process.

Parcels solve this problem by partial loading : the parcel loader constructs a
foster home for the code to live in until suitable parentage can be obtained.
On encountering an import for a class that is not present the loader raises
a warning which the user can respond-to either by aborting the load or by
continuing. If the loader continues it creates an instance of a special class
(AbsentClassImport), stores it at the relevant index in the object table, and
initializes the object with all the format information available in the parcel
(again using the class import information available in the parcel). Later on in
the load attempts may be made to add methods to the AbsentClassImport

or to subclass it:

Adding methods to a non-existent class. The case of adding methods
is handled by the loader collecting these extensions and adding them to the
transient properties of the loaded parcel as its uninstalled methods.

Subclassing a non-existent class. When a subclass needs to be made from
an absent class, AbsentClassImport constructs an impostor super class, an
instance of AbsentClassImporter, that has all the instance variables defined
by the absent import and a few extra to hold information like the binding used
to reference the class, and the real name of the absent super class. This impos-
tor then continues to construct the class as for any ordinary class. Class-side
code will be shape-changed to account for the extra bookkeeping information
(the absent class’s binding and name, etc) stored in the impostor. During the
install phase of a parcel, this information is used to remember the code in the
parcel that could not yet be loaded.

4.3 Parcel Install Phase

When the load phase finishes successfully, the install phase actually installs
the objects defined by the parcel in the system: classes are added to their

11



super class’s subclasses sets, globals are added to namespaces, and method
additions and replacements are added to existing classes. At the same time
uninstalled methods and uninstalled classes are segregated and stored in the
parcel’s transient properties so that they can be added should these classes
become available later on. Once this is complete the system of classes and
methods is in a valid state, one that could have been achieved through normal
use of the programming environment.

At this point it is safe to perform class and global variable initialization. Al-
though this initialization may cause run-time errors these will now be examples
of buggy code, since all installable code has been properly installed, and the
system is in a valid state. Hence the programmer is in a position to debug the
problems as they would if they were developing unparceled Smalltalk code.

Lastly, the parcel’s post-load action, an arbitrary block, is evaluated. Note
that messages sent to instances of AbsentClassImporter (created during a
partial load) are not invoked, since they merely wait to be installed when
their prerequisites become available at a later time. The installation phase is
guaranteed not to fail, and is effectively atomic.

4.4 Parcel Postload Phase

If a class that was previously absent was made available by a parcel load, then
uninstalled methods and classes may become installable. During the post-
load phase, all parcels in the system are checked to see whether they can
now install previously uninstalled code. Method additions on absent classes
are simply added to the now-present versions, making sure to check for any
method replacements and adding these to the replaced method set. Unin-
stalled subclasses of the now-present class are asked to install themselves.
The classes re-parent themselves, leaving the AbsentClassImporters to be
garbage-collected, and their code is once again shape-changed to adjust to the
loss of the extra bookkeeping information stored in the AbsentClassImporter.

The checking is done by sending a #postLoad: message to the parcel, which
answers with a boolean indicating whether any uninstalled code was added.
The loader continues to send #postLoad: to all parcels until all parcels answer
false, which tells the loader that no further code was installed, and the system
of parcels has reached a fixed-point. In this way the system can handle mu-
tually recursive parcels. Figure 4 illustrates the solution. Four classes (A, B, C
and D) are involved, that all inherit from eachother. Classes A and C belong to
parcel P1, while parcel P2 contains classes B and D. Loading parcel P1 installs
only class A (providing its super class is present). A subsequent load of parcel
P2 will then install classes B, after which classes C and D get installed.

12



A

B

C

D

Parcel P1

Parcel P2

Fig. 4. Two mutually recursive parcels.

5 Unloading

The unloading of a parcel removes the definitions added by the parcel from
the system, and removes the source file associated with the parcel (if there
was one) from the registry of source files. Parcels tackle several unloading
problems:

• When instances exist of classes that are unloaded, obsolete classes are cre-
ated. An obsolete class is the remnant of a removed class. It continues to
exist in the image for as long as either at least one compiled method ref-
erences the removed class or at least one instance of the removed class
is reachable. Through the usage of obsolete classes the instances can con-
tinue to function. There is one caveat when classes are removed that have
subclasses. In this situation the system will prompt for confirmation, since
removal of such classes causes problems. For example, removing parcel P2
from the example shown in Figure 4 results in a warning that asks for per-
mission before continuing. If the parcel is then unloaded, problems arise for
class C, since its super class is removed.

• When a parcel has method replacements (so-called overrides in parcel ter-
minology), the code of the original methods is restored. This is possible
because the original methods are remembered by the system in a central
repository (the class Override and its subclasses), and the order in which
they were added.

13



Application classes/methods/extensions format load write

VW-XML 48 / 543 / 0 chunk 2,615 244

envy 2,000 900

parcel 85 211

Soul (v. 2.3) 117 / 1,923 / 18 chunk 7,906 800

envy 4,000 2,000

parcel 393 676

RB 187 / 3,327 / 53 chunk 11,554 1,352

envy 4,000 5,000

parcel 630 1,920

Jun (v. 4.99.08) 757 / 25,212 / 0 chunk 110,729 8,694

envy 11,000 14,000

parcel 2,008 21,979
Table 1
First series of experiments that compare loading and writing times in VisualWorks
3 for the chunk, ENVY/Developer and parcel format (all times in milliseconds -
thousands separated by a comma).

6 Validation

Over the past ten years almost all Smalltalk environments have been extended
with various code storage mechanisms that have improved upon source files.
This section first shows two series of benchmarks to compare the speed for
reading and writing of parcels to other approaches. In a first series of exper-
iments with VisualWorks 3, the ENVY/Developer ormat is compared to the
chunk and parcel formats. A second series of experiments compares Visual-
Works 7.2 parcels with the XML-chunk, VisualWorks Store, Squeak’s Monti-
cello and Dolphin’s PAC format. Both series of experiments were performed
on the same machine (AMD 3000+, 768 Mb of memory, Windows XP SP1).
The section then finishes with an enumeration of some user benefits that show
how code deployment is facilitated by the advanced loading features offered
by parcels.

6.1 VisualWorks 3 Experiments

Table 1 shows the results of the first series of experiments that compares
parcels with the following two formats:

14



• envy The binary format of ENVY/Developer dat files), the multi-user de-
velopment add-on for VisualWorks [7]. We worked on a locally installed
repository to eliminate network access, and took the times loading from
and saving to the repository (not the importing of the code in the reposi-
tory).

• chunk format The traditional Smalltalk textual chunk format [8].

Note that we only had access to ENVY/Developer, and that this version
requires the virtual machine of VisualWorks 3. Therefore we used VisualWorks
3 for this whole first series of experiments, so that we can make a direct
comparison between the numbers. We chose the following 4 applications of
different sizes to do the comparisons:

• VM-XML 1 was a project to come to a dialect independent, XML-based file-
out format. It is the smallest application we tested, having only 48 classes.

• Soul [9] 2 , a logic programming language that lives in symbiosis with Small-
talk. We used the older version 2.3 for these tests, since it was the last
version for VisualWorks 3.

• Refactoring Browser [10] 3 the browser that pioneered the integration of
refactoring operations in a development environment.

• Jun 4 is a 3-D graphics framework that maps to OpenGL. It is the largest
application we experimented with (consisting of 757 classes).

As can be seen in Table 1, parcels have the fastest loading speed of the formats
tested. The chunk format is by far the slowest, since it is an ASCII format that
is parsed on reading, adding the code to the system as the file is read. It is
not a mechanism to store objects. The ENVY/Developer ormat is a bit faster
than the chunk format, especially for larger applications. Regarding writing
speed it can be noticed that for bigger applications the creation of parcels is
slower than using ”simple” formats such as the chink format. This is to be
expected, since the writing process is two-phase and has to do more work.

6.2 VisualWorks 7.2 Experiments

In the following series of experiments we compared the reading and writing
speed of parcels with more recent techniques from VisualWorks and other
Smalltalk environments.

1 version for VW5i, http://wiki.cs.uiuc.edu/VisualWorks/Visual-
Works+XML+Framework
2 version 2.3, http://prog.vub.ac.be/research/DMP/soul/soul2.html
3 version for VW30, http://st-www.cs.uiuc.edu/users/brant/RefactoringBrowser/
4 version 4.99.08, http://www.sra.co.jp/people/aoki/Jun/htmls/Download e.html

15



Application classes/methods/extensions format load write

Classifications2 6 / 116 / 2 Store 2,194 1,095

mcz 376 600

PAC 238 787

parcel 189 139

Soul (v. 3.2) 146 / 2,081 / 61 Store 17,586 16,690

(131 / 1,834 / 51; no init) mzc 6,799 5,000

(129 / 1812 / 51; no init) PAC 4,684 455

parcel 1,514 1,677

Swazoo 101 / 6,646 / 4 Store 61,721 43,501

(no initialization) mcz 3,420 2,100

(no initialization) PAC 1,667 734

parcel 1,764 49,479

SmallWiki 119 / 1,613 / 13 Store 12,959 8,664

(no initialization) mcz 5,776 4,000

(117 / 1,539 / 8; no init) PAC 3,016 1,095

parcel 4,229 1,015

(117 / 1,539 / 8; no init) parcel 1,903 983

SIXX 37 / 271 / 100 Store 3,352 2,822

(no initialization) mcz 1,741 900

(55 / 573 / 112) PAC 1,485 4,031

parcel 2,331 353
Table 2
Comparing loading and writing times in VisualWorks 7.2 for the chunk, Store,
Monticello, PAC and parcel format (all times in milliseconds - thousands separated
by a comma).

• VisualWorks Store Store is the multi-user development add-on for Visual-
Works. Since it did not exist for VisualWorks 3, we compared it here with
the other non-VisualWorks mechanisms. We installed a local PostgreSQL
database, and used that for the experiments so that network latency was
avoided. We experimented using the commonly used textual format.

• Squeak Monticello mcz Monticello is a distributed concurrent versioning
system based on a declarative representation of Squeak source code. The
mcz files are basically zip files that contain a manifest file giving meta-

16



information and a textual chunk file.
• Dolphin PAC files PAC files are the default mechanism for packaging code

in the Dolphin environment. They are a chunk-like textual format.

For performing the comparison we took a number of applications that we could
run in these different environments. Note that we had to use other applications
(or other versions of applications) due to the differences between VisualWorks
3 and VisualWorks 7, such as the addition of namespaces in the latter. Note
that we did not port the applications: we merely made sure we could the
source code and perform measurements.

• Classifications2 [11] 5 : The classifications model is the domain model for
the StarBrowser. We used it because it is small and runs identical between
Squeak and VisualWorks.

• Soul : A more recent version (3.2) of the language also used in the other
series of experiments.

• Swazoo 6 : An open source Smalltalk HTTP server with resource and web
request resolution framework.

• SmallWiki 7 : An implementation of a wiki-wiki server in Smalltalk.
• SIXX 8 : A XML framework for Squeak, Dolphin and VisualWorks.

The results of the experiments are shown in Table 2. Parcels and Dolphin’s
PAC format are the fastest mechanism for reading. The very good performance
of PAC files is quite surprising, since it is basically a chunk format. Upon in-
vestigating the issue we found out that the reason is that we removed not
only methods and classes that gave compatibility problems for loading (such
as DLL/CC classes, that are used by VisualWorks to link with external C and
C++ libraries), but also removed the initialization code that would normally
be launched after filing in. The Store, chunk and parcel formats therefore do
much more work: the code is loaded and then executed. To give an example
about the difference this makes, we created a (defunct) SmallWiki parcel with
exactly the same classes and methods as used by the Dolphin version, and
removed the initialization code. The loading time then falls from 4,229 mil-
liseconds down to only 1,903 milliseconds (versus 3,016 milliseconds for PAC
files). Note that this does not explain the difference in loading speed for the
SIXX parcel, but for SIXX we had completely different implementations for
parcels and PAC.

Surprising is that the parcel writing is also quite fast, about on par with the
writing of PAC and chunk files. We are investigating the issue of why the
writing of the Swazoo parcel takes such a very long time.

5 version 0.63, Cincom Public Store
6 version 0.9.76-bb10, Cincom Public Store
7 version 0.9.51, Cincom Public Store
8 version 0.1h, http://www.mars.dti.ne.jp/∼umejava/smalltalk/sixx/

17



6.3 User Benefits of Load Features

Our experience has shown that the method replacement and partial loading
facilities contribute significantly to improved programmer-productivity when
componentising, and to the flexible configuration of deployed systems. Users of
the Smalltalk environment Visual Studio that use SLL files and that switched
to parcels reported that Parcels are much more convenient to use, because
they allow for flexible packaging of the code. VisualWorks 3.0 was the first
release of VisualWorks to support parcel source, method replacements and
partial loading. It was also the first release to deliver all add-on modules in the
form of parcels. Method replacements and partial loading were instrumental
in being able to decompose the entire system and deliver it on schedule. Later
released added minor enhancements.

The method replacement facility enables parcels to perform necessary base
modifications on load and enables parcels that perform base modifications
to be written such that they unload. Unloading makes it much easier for
a programmer to try-out a parcel, and to use an extraneous tool in their
development context temporarily, e.g. temporarily loading the mail tool into
a development image.

The partial loading facility reduces the number of parcels that must be devel-
oped and maintained. They allow the programmer to maintain a single logical
entity instead of a proliferation of physical parcels. In certain cases it may
be more convenient to deploy a single parcel that in some circumstances only
partially loads. The warning suppression block can be used to suppress absent
class import warnings in a deployment context, allowing the parcel to load
cleanly without alarming the user.

What makes the parcel system so usable is the combination of these features
with the added speed benefits over other formats. This explains the popularity
of parcels over other VisualWorks mechanisms as soon as they were released.

7 Future Work

The parcel system in its current state has been the code deployment mech-
anisms for VisualWorks since VisualWorks 3. It also served as the basis for
the multi-user development system of VisualWorks (called Store). However,
parcels have some drawbacks that we are planning to tackle in new releases.

Extending Shape-changing. The Parcel system currently has very rudi-
mentary support for shape-change of instances. We plan to add an extensible

18



framework by which objects can intervene to augment the simple re-mapping
shape-change done at present. Furthermore we plan to add a scheme for adding
code to the current system that is used to shape-change instances in old
parcels. Ted Kaehler has done a powerful scheme for Squeak’s loadable com-
ponent system 9 . But this scheme requires the user to provide shape-changing
code at load time. While this is appropriate and useful in the hands of skilled
Smalltalk developers it seems inappropriate for most deployment contexts.

Parcel Security Framework. Parcels have been used to implement a Small-
talk applet framework where code is loaded across the internet a la Java ap-
plets. However, no suitable security framework has yet been developed. We find
the Java sandbox approach limiting, in that it works by restricting the full
power of the system. Instead, we are investigating higher-level mechanisms,
in particular proof-carrying code. Proof-carrying code approaches would re-
quire a type system such as [12]. Type inference systems are also useful when
attempting to determine the boundaries of components [13]. We expect the
combination of the Parcel System and a suitable type system to be very syn-
ergistic.

No lazy Loading. The standard parcel system does not support lazy loading,
à la Java class files [14]. Currently the performance of the parcel system is so
good that we have not needed to use lazy loading to improve load times, but
more experience, for example in a web setting, may cause us to reconsider.

Building the underlying mechanism for a lazy-loading scheme is relatively
straightforward in VisualWorks since all references to classes are through
variable bindings. Therefore we can simply add and use subclasses of class
VariableBinding that search for and load the class before returning it. How-
ever, a major issue for lazy loading is the design of the registry that maps
requests for classes to the parcel to load. The current loader provides a user-
specifiable set of directories in which to search for parcels when finding pre-
requisite parcels. But the simple set of parcel directories, while convenient in
many contexts is inadequate when parcels are used to represent applets loaded
over the net. Were parcel headers extended with a list of the classes they de-
fine then a policy of searching the path for the first parcel that defines the
required class might suffice.

Ordering Method Additions When the loader installs method additions
and method replacements, it installs all additions before any replacements,
since replacements may attempt to invoke additions. One can construct ar-
tificial cases where this ordering is inadequate. While so far this policy has
proven adequate in practice, it needs to be made full proof.

9 Private communication. The results can be seen in the Squeak Smalltalk environ-
ment found at http://www.squeak.org/

19



8 Related Work

There is some older, undocumented related work. First of all, OTI extended
ENVY/Developer (used in our benchmarks) with method loading. The result-
ing system is called ENVY/App. There were also some companies that imple-
mented binary application loading themselves (such as Quallcomm). Since we
were unable to find information on these systems, let alone obtain running
systems, we were unable to compare them or benchmark them with parcels.

Java has support for pickling objects [5]. It uses a recursive approach to ac-
complish this. As noted in [5], “the current recursive traversal is suitable for
only modest size graphs and will need to be extended to accommodate very
large graphs.” A similar approach is used in Python. It could be interesting
to implement the pickling scheme proposed in this paper in Java or Python,
and then compare the recursive approach with the non-recursive approach.

Regardless of the speed claims of the pickling format used, we do not know
of other packaging mechanisms that have the loading and unloading features
that parcels offer. The mechanism that comes closest is probably the Classbox
system [15], a module system for object-oriented languages that allows local
rebinding. Local rebinding means that a classbox (module) can make method
additions and method replacements that are visible only to the classbox that
defines them, without impacting the rest of the system. Such a feature is not
available with classes. However, classboxes lack the meta information found in
parcels (such as developer name, timestamps, etc.), storing arbitrary objects
and last but not least, partial loading.

9 Conclusions

We have described a deployment technology for storing objects and their be-
haviour that permit their transportation between and importation into sys-
tems. The system is novel in that its binary format supports extremely fast
loading and its provision of method replacements and partial loading frees
the programmer from maintenance tasks required by less flexible technologies.
This technology has proven itself in industrial use and underpins the product
architecture of VisualWorks 3.0 and 4.0.

We have described some deficiencies of the parcel system and a number of
avenues for further work to resolve these issues.

20



Acknowledgments

We would like to thank Alexandre Bergel, Gilad Bracha, Steve Dahl, Stéphane
Ducasse, Brian Foote, and Ralph Johnson for reviewing drafts of this paper.
Thanks are also due to the members of the VisualWorks development team
who were and continue to be instrumental in the design and implementation
of the Parcel system, and to many brave customers who have uncovered the
bugs.

References

[1] S. R. Vegdahl, Moving structures between Smalltalk images, in: Proceedings
OOPSLA ’86, ACM SIGPLAN Notices, Vol. 21, 1986, pp. 466–471.

[2] Parcplace systems, objectworks reference guide, smalltalk-80, version 2.5,
chapter 36, parcPlace Systems (1989).

[3] G. Nelson, Systems Programming With Modula-3, Prentice Hall Series in
Innovative Technology, 1991.

[4] D. Ungar, Annotating objects for transport to other worlds, in: Proceedings
OOPSLA ’95, 1985, pp. 73–87.

[5] R. Riggs, J. Waldo, A. Wollrath, K. Bharat, Pickling state in the Java system,
Computing Systems 9 (4) (1996) 291–312.
URL http://citeseer.nj.nec.com/riggs96pickling.html

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, Reading, Mass., 1995.

[7] J. Pelrine, A. Knight, Mastering ENVY/Developer, Cambridge University
Press, 2001.

[8] G. Krasner, Smalltalk-80: Bits of History, Words of Advice, Addison Wesley,
Reading, Mass., 1983.

[9] R. Wuyts, A logic meta-programming approach to support the co-evolution
of object-oriented design and implementation, Ph.D. thesis, Vrije Universiteit
Brussel (2001).
URL http://www.iam.unibe.ch/~scg/Archive/PhD/Wuyts-phd.pdf

[10] D. Roberts, J. Brant, R. E. Johnson, A refactoring tool for Smalltalk, Theory
and Practice of Object Systems (TAPOS) 3 (4) (1997) 253–263.

[11] R. Wuyts, S. Ducasse, Unanticipated integration of development tools using the
classification model, Journal of Computer Languages, Systems and Structures
30 (1-2) (2004) 63–77, special issue: Smalltalk Language.
URL http:
//www.iam.unibe.ch/~scg/Archive/Papers/Wuyt03cClassifications.pdf

21

http://citeseer.nj.nec.com/riggs96pickling.html
http://www.iam.unibe.ch/~scg/Archive/PhD/Wuyts-phd.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Wuyt03cClassifications.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Wuyt03cClassifications.pdf


[12] G. Bracha, D. Griswold, Strongtalk: Typechecking Smalltalk in a production
environment, in: Proceedings OOPSLA ’93, ACM SIGPLAN Notices, Vol. 28,
1993, pp. 215–230.

[13] O. Agesen, D. Ungar, Sifting out the gold — delivering compact applications
from an exploratory object-oriented programming environment, in: Proceedings
OOPSLA ’94, LNCS, Springer-Verlag, 1994.

[14] S. Liang, G. Bracha, Dynamic class loading in the Java virtual machine, in:
Proceedings of OOPSLA ’98, 1998.

[15] A. Bergel, S. Ducasse, R. Wuyts, Classboxes: A minimal module model
supporting local rebinding, in: Proceedings of JMLC 2003 (Joint Modular
Languages Conference), Vol. 2789 of LNCS, Springer-Verlag, 2003, pp. 122–
131, best paper award.
URL
http://www.iam.unibe.ch/~scg/Archive/Papers/Berg03aClassboxes.pdf

22

http://www.iam.unibe.ch/~scg/Archive/Papers/Berg03aClassboxes.pdf

	Introduction
	Overview of Parcels
	Example: The ColorEditing Parcel

	Parcel Pickling Format
	Current Formats for Pickling Objects
	Pickling Objects the Parcel Way
	Unpickling a Parcel

	Applying a Parcel
	Parcel Preload Phase
	Parcel Load Phase
	Parcel Install Phase
	Parcel Postload Phase

	Unloading
	Validation
	VisualWorks 3 Experiments
	VisualWorks 7.2 Experiments
	User Benefits of Load Features

	Future Work
	Related Work
	Conclusions
	References

