Language support for Adaptive

Object-Models using Metaclasses *

Reza Razavi® Noury Bouraqadi® Joseph Yoder ©
Jean-Francois Perrot ¢ Ralph Johnson ¢

aSoftware Engineering Competence Center - University of Luxembourg
6, rue Richard Coudenhove-Kalergi - Luxembourg, L-1359- Luxembourg
reza.razavi@univ.lu

b Ecole des Mines de Douai - Dépt. G.I.P
941, rue Charles Bourseul - B.P. 838 - 59508 Douai Cédex - France
bouragadi@ensm-douai.fr

¢Department of Computer Science
University of Illinois at Urbana-Champaign - Urbana, 1L 61801 - USA
yoder@refactory.com - johnson®cs.uiuc.edu

d Laboratoire d’Informatique de Paris VI (LIPG6)
Université Pierre et Marie Curie - CNRS - Paris, 75252 - France
jean-francois.perrot@lip6.fr

Abstract

Adaptive Object Models are a sophisticated way of building object-oriented sys-
tems that let non-programmers customize the behavior of the system and that are
most useful for businesses that are rapidly changing. Although systems based on
an Adaptive Object Model are often much smaller than competitors, they can be
difficult to build and to learn. We believe that the problems with Adaptive Object
Models are due in part to a mismatch between their design and the languages that
are used to build them. This paper describes how to avoid this mismatch by using
implicit and explicit metaclasses.

Key words: Adpative Object Model (AOM), TypeObject Pattern, Meta-Object,
Implicit Metaclasses, Explicit Metaclasses

* The work communicated in this paper has been conducted while the first author
doing his PhD at Laboratoire d’Informatique de Paris 6 (LIP6), Université Paris 6
- CNRS, Paris, France.

ESUG Conference ~ 2004 Research Track (www.esug.org)

1 Introduction

Rapid change in business practice creates the need for software development
approaches that permit rapid changes in software. The next generation of
software systems must be sufficiently malleable and sensitive to business dy-
namics to allow businesses to adapt to the shifting operating environments.
The Adaptive Object-Model Architectural Style [1] is born from the quest
for such software by pioneering business organizations [2-4]. Recent academic
researchers have documented the recurring design patterns of those systems
[5-11].

Adaptive Object-Models (AOM) are object-oriented applications that use reg-
ular objects, i.e. instances, for representing metadata that describes the desired
structure and behavior of the software in a given operating environment. For
instance, the object-model, business rules [12] and roles relevant to a specific
insurance or finance product can be specified at runtime by metadata. Business
experts change the metadata using graphical tools to reflect domain changes
in the software. The user-generated metadata is interpreted and this leads
to “immediate”, but controlled, effects on the system interpreting it. This is
different from traditional configuration since this architectural style enables
runtime and intuitive modification of the class hierarchy of the object-oriented
program. Opening the system for intervention of “non-programmers” at run-
time is one of the major assets of AOMs. Indeed, as it is observed by Bonnie
A. Nardi [13], domain experts have the detailed task knowledge necessary for
creating the knowledge-rich applications they want and the motivation to get
their work done quickly, to a high standard of accuracy and completeness.
AOMs are designed for empowering experts and make it possible:

e To develop and to change software quickly. AOM reduces time-to-market,
by giving immediate feedback on what a new application looks like and how
it works, and by allowing users experiment with new product types,

e To modify a software in accord with business experts, without calling pro-
grammers,

e To avoid shutting down the system in order to adapt it to new or local
business needs,

e To reduce the volume of code that programmers should develop and main-
tain.

AOMs have the potential for providing businesses with highly competitive
tools to cope with changes resulting from recurrent merges, alliances, acqui-
sitions, etc. In short, AOMs correspond to an industrial reality, and have the
potential to assist organizations in coping efficiently with their business evo-
lution. They represent an important, long-term trend in software engineering.
However, AOMs can require more effort to develop. Several reasons that have

been outlined in the literature are:

e An AOM can be hard to implement since it has more complex requirements,
e.g. the need for producing, storing and interpreting metadata,

e Since an AOM leads often to a domain-specific language, therefore, as for
any language, developers should provide programming tools such as debug-
gers, version control, and documentation tools,

e Developing database schemas and graphical user interfaces for AOM is
harder since the specification of the underlying data changes at runtime,

e The architecture of an AOM can be harder to understand, document and
maintain since there are two coexisting object systems; the interpreter writ-
ten in the object-oriented programming language, and the object-model of
the underlying business domain that is interpreted.

In this paper, we explore the use of reflection [14-16] for supporting AOM
programming. More precisely, we focus on the use of metaclasses to support
class adaptations made by business experts at runtime, while avoiding the
mismatch between their design and the languages that are used to build them.
So, computer professionals can maintain and evolve code changed by experts.
We explored the use of Smalltalk-80 [17] implicit metaclases as an alternative
to traditional techniques. Implicit metaclasses come with their drawbacks.
Explicit metaclasses experimented with MetaclassTalk [18,19] proved more
satisfactory.

The rest of this article is organized as follows. Section 2 describes the context
of this research and states the research problem that we address. Section 3
explains how to address that problem using metaclasses. Section 4 presents
the related work. Section 5 is devoted to conclusions and perspectives of this
work.

2 Background on AOMs and the Problem Statement

The concept of AOM is born recently from the research aiming at discovering
and documenting the design principles of a particular class of software with
complex behavior that emerged from the industry. AOMs have been also called
in the past “User Defined Product architecture” [2], “Active Object-Models”
[8,7] and also “Dynamic Object Models” [9].

2.1 AOMs as Metadata interpreters

AOMs are software systems that interpret an object-oriented representation of
some business products and rules. That representation is described as meta-
data [8] that specifies the latest object model of the business. Those specifi-
cations are stored in a database and loaded when necessary for building up
the object model that represents the real business model that is interpreted to
provide the desired behavior. So, the architectural style of AOMs emphasizes
run-time adaptability by designing business software as a metadata interpreter.

Mentioning metadata is just saying that if something is going to vary in a
predictable way, then you should store the description of the variation in a
database so that operating the variation is easy. In other words, if something
is going to change a lot, make it easy to change. The problem is that it can
be hard to figure out which elements are going to change, and even if you
know it then it can be hard to figure out how to describe the variations in
your database. Code is powerful, and it can be hard to make your data as
powerful as your code without making it as complicated. But when you are
able to figure out how to do it right, metadata can be incredibly powerful, and
can decrease your maintenance burden considerably. The most difficult part
of developing an AOM is of course to figure out the model of the variations.
This corresponds to a metamodel [20] since its instances represent the object
models of the system.

Recent pattern mining effort [7,9,10] has allowed documenting the most fun-
damental underlying design patterns [21] such as (1) design for runtime-
definition of classes, (2) design for runtime-definition of attributes, (3) design
for runtime-definition of relationships, and (4) design for runtime-definition of
behavior. In the terminology used in this paper, this activity is called adap-
tation, and the entity that results from this activity is also called an adapta-
tion. The class that is extended by an adaptation is called an adaptive class.
Each adaptive class models an evolving element of the changing domain, like
Videotape in the example that follows, where Terminator is one of its possible
adaptations.

The focus of this paper is only on design for the runtime-definition of a class
by a domain expert.

2.2 The Classic AOM Technique for Adapting a Class

The problem of design for runtime class definition in AOMs is a case of the re-
current problem faced by developers of large systems, having to design a class
(generically called Component) from which an unknown number of subclasses

should be derived. A standard solution to this problem is documented by the
TypeObject pattern [5]. It consists in representing the unknown “subclasses”
of Component by simple instances of a class generically called ComponentType.
New “subclasses” can be created at run-time by instantiating ComponentType.
Instances of these “subclasses” are then created as regular instances of Compo-
nent with an explicit pointer to the instance of ComponentType that represents
their subclass. In this setting, instances of ComponentType are interpreted as
types for the ordinary instances of Component.

As a simple example of the feature we want to exploit, consider the Video-
store example of the Type-Object pattern given by Johnson & Woolf [5]. In
this case, the business objects are videotapes containing movies (exactly one
movie in each tape), which are rented to customers. Terminator n° 20, n° 21,
etc. are examples of videotapes of the movie called Terminator. Of course, the
store will own and rent several videotapes of the same movie. End-users of the
system will deal with existing videotapes, manage their rental to customers
and conduct the bookkeeping. Maybe they will sometimes acquire new video-
tapes for existing films. Domain experts on the contrary will have to introduce
new movies, with their title, rental price and rating.

The design problem is that the exact number of available movies can be known
only at runtime (our client is not interested in a software that manages a pre-
defined number of movies; it doesn t makes sense nowadays for this business).
Applying TypeObject leads to a design with two classes: class Videotape as
Component, and class Movie as ComponentType. Each instance of Videotape
carries a metaobject (instance of Movie) which represents the movie and con-
tains information shared by all Videotapes of the same title.

It should be noted that class Movie represents here the class model of the inter-
preter embedded in the AOM. Its instances (generated at run-time) constitute
the metadata that represents the different videotapes.

In this example, Videotape should then be an adaptive class, whereas Customer
remains an ordinary class (since our domain model does not contemplate its
modification: one may suppose that it is fixed by other constraints, such as
corresponding to an external database, etc). A usage scenario of this design
would be something like:

|term terml term2 joel

term := Movie title: ’Terminator’.
terml := Videotape movie: term.
term2 := Videotape movie: term.
joe := Customer new.

terml rentTo: joe. etc...

where title: and movie: are creation methods of classes Movie and Videotape

——> subclassOf Object

********* > instanceOf
buildtimeAdd

Videotape| -movie Movie
-isRented e
-rentalPrice
-renter A
1 -rating
N N
| [/‘\
P ! . I
!) term2 -movie I
term1 -movie | term
\ [

Fig. 1. Class & instance diagram of the Videostore example, with TypeObject de-
sign.

respectively. Instance terml of Movie, representing Terminator, is the meta-
object common to instances terml and term2 of Videotape. Fig. 1 provides
the diagram of this example. Classes created on software build-time (i.e. by
computer professionals) are grayed.

It should be noted that domain experts execute this scenario or other presented
in this paper using a GUI. The code described all along this paper corresponds
to what happens behind the scene, from the programmers’ point of view.

Here is the relevant fragment of code borrowed from [5], to be compared with
the code resulting from approach presented in the following sections.

Movie class>>title: aString
“self new initTitle: aString

Object ()
Videotape (movie isRented renter)
Movie (title rentalPrice rating)

Movie>>newVideotape
“Videotape movie: self

Videotape>>initMovie: aMovie
movie := aMovie

Videotape>>rentTo: aCustomer
self checkNotRented.
aCustomer addRental: self.
self makeRentedTo: aCustomer

Videotape>>checkNotRented
isRented ifTrue: [“self error]

Customer>>addRental: aVideotape
rentals add: aVideotape.
self chargeForRental: aVideotape rentalPrice

Videotape>>rentalPrice
“self movie rentalPrice

Videotape>>movie
“movie

Videotape class>>movie: aMovie
“self new initMovie: aMovie

Movie>>rentalPrice
“rentalPrice

Movie>>initTitle: aString
title := aString

2.8 Business Objects and their MetaObjects: the Mismatch Problem

The following discussion hinges on the distinction between non-terminal and
terminal objects (or, respectively, classes and non-classes). A terminal object
is not a class; rather it is an instance of a class. The expression “non-terminal
object” is equivalent with “class”. As an abbreviation, it is often practical
to transfer the qualification of instances to their classes: accordingly we shall
speak of a terminal class to mean a class whose instances are terminal objects,
as opposed to a metaclass, whose instances are classes [22].

The central problem in AOM design is the representation of evolving busi-
ness objects. It follows that a regular set of classes, of which the business
objects would be instances, won’t be enough. The definition of a business
objects must be assigned to specific meta-objects whose role is to represent
information about the implementation and the interpretation of the object.
As it is described in Dynamic Object Model design pattern (DOM) paper
9], to address this issue AOMs apply currently the TypeObject design tech-
nique, where “type” objects represent information about the implementation
and the interpretation of associated business objects (which is the role of a
meta-object).

As explained above, this pattern introduces two separate classes, known gener-
ically as Component and ComponentType. Class Component takes care of the
fixed part, and class ComponentType deals with the variable part. Accordingly,
a business object will be realized as an instance of Component (the “object”)
coupled with an instance of ComponentType (the “meta-object”), by means
of a pointer. Our analysis is that such a business object will then have two
metaobjects, (1) its class, of which it is instance, and (2) the associated com-
ponent type (instance of ComponentType). For instance, a business object
resulting from this design such as the Spiderman videotape n° 20 will have as
metaobjects class Videotape as well as an instance of Movie.

In our running example, Movie is an “ordinary” class, and therefore its in-
stances are non-classes. However, according to TypeObject, each of these in-
stances plays a class-like role for all instances of the class Videotape to which
it is related (this role might be described as a “class complement”). This as-
sociation is created by the initMovie: method in Videotape class, which is itself
called by the creation method movie: in the metaclass “Videotape class”. In
other words, each terminal instance of Movie represents a subclass of Video-
tape, as was said earlier. However, such a subclass does not exist in reality, and
the objects that are considered as being its instances, are in reality instances
of Videotape (instances of Movie being terminal, it is impossible to instantiate
them).

As an example of the undesirable consequences of this design, when program-
mers “inspect” the Spiderman wvideotape n° 20, they see that it is an instance
of Videotape with an instance variable “type” that refers to a Movie. It would
be more helpful for them to see that this videotape is an instance of Spiderman,
which would be at the same time a subclass of Videotape and an instance of
Movie.

The classic AOM solution thus leads to a conceptual and technical problem
from the point of view of AOM programmers and maintainers. The origin of
this problem is the mismatch between the semantics of TypeObject and that of
the underlying object-oriented language, here Smalltalk-80, in their approach
to subclassing. The consequences of this mismatch are well documented in
the Dynamic Object-Model design pattern paper as increased design com-
plexity, increased runtime complexity, and new development tools. The goal of
this communication is to present an alternative approach that will avoid this
mismatch.

3 Solution by Using Metaclasses

Our proposal is to use as meta-objects those objects that naturally play such
a role, namely classes. Of course, this will entail some extensions to the tradi-
tional design of classes. This is precisely here that metaclasses [23,22,24] come
into play.

Subsection 3.1 gives an overview of metaclass use. Subsections 3.2 and 3.3
describe and illustrate the use of respectively implicit and explicit metaclasses
for implementing component types. Subsection 3.4 provides a summary of the
approach and its results.

3.1 Overview of Metaclass use

Our design is strongly influenced by Smalltalk and by Pierre Cointe’s ObjVlisp
model [25,26]. In Smalltalk the idea that classes are indeed objects takes the
following strong form: any class may be endowed with a set of instance vari-
ables and a dictionary of methods which gives it an individual behavior as an
“ordinary” object. In normal practice, this facility is mainly used to define
instance creation methods. We propose to make use of the same facility to
endow a class X with all the structure and behavior needed to turn it into the
metaobject of its instances. As for any object, the way to define those instance
variables and methods is to write them in the class of which X is instance.
Since X is a class, its class is a metaclass.

To proceed further we need to be more specific about the status of metaclasses.
As is well-known, introducing metaclasses leads to a number of non-trivial dif-
ficulties for which we have to choose a solution. We shall consider (1) standard
Smalltalk (2) an extension of Smalltalk called MetaclassTalk which is the lat-
est development of a long line of research [19,18].

Standard Smalltalk [17] imposes very strict limitations on its metaclasses.
With each class C a metaclass called “C class” is automatically associated,
of which C is the only instance. “C class” can be edited to receive additional
instance variables and methods and hence change the structure and behavior
of C. If class B is a subclass of C, then its associated metaclass “B class”
is automatically a subclass of metaclass “C class” inheriting the additional
structure and behavior that was added to class C and which therefore applies
also to B.

The solution idea is then to implement ComponentTypes as metaclasses. In
this context, adding a component type corresponds to adding a new metaclass.
Adding a new component means then instantiating the relevant metaclass. To

illustrate this idea, consider again our running example. We propose that each
movie (call it M) should be represented as a subclass of Videotape, of which
those videotapes that contain M will be instances. To this end we must endow
these classes with the necessary (meta)behavior by means of their metaclasses.
A simple way of realizing it in standard Smalltalk is to define the metabehav-
ior in the metaclass “Videotape class”, and to take advantage of the parallel
inheritance of metaclasses.

The plain Smalltalk-based solution works fine, but since a metaclass can have
only one instance the designer cannot reuse the same instance behavior with
various meta-behaviors. Also, metaclasses are not treated as ordinary classes,
so that there is no possibility of applying the same scheme to a metaclass in
order to obtain multiple ontological levels.

In MetaclassTalk things are different. Metaclasses exist in an independent
fashion and are created as such. When creating a class, its metaclass can be
specified as well as its superclass. It is therefore possible to use both super-
class specification for instance behavior, and metaclass specification for class
behavior.

3.2 Use of Implicit Metaclasses

The first model of metaclasses that we propose to experiment is that of implicit
meta-classes implemented by Smalltalk-80. This model can be sketched as
follows:

The metaclass of each class is chosen (created) automatically by the imple-
menting system. Such metaclasses are implicit: they are both anonymous and
developers don’t handle them directly. The system manages the metaclass in-
heritance hierarchy and makes it be parallel to the class inheritance hierarchy.
Because of these parallel hierarchies, properties (i.e. structure and behavior)
of a given class are automatically propagated to sub-classes.

The Smalltalk-80 model of implicit metaclasses supports specialization by
means of a framework whose extension points are the Object class, the Class
metaclass, and the Metaclass metaclass. Object is the root of the hierarchy of
classes that describe the structure and behavior of non-classes. Class is the
root of metaclasses that describe the structure and behavior of classes. Meta-
class is the root of the meta-metaclass hierarchy that describe the structure
and behavior of implicit metaclasses.

The typical case in Smalltalk is to use Metaclass as the default meta-metaclass.
However, it is possible to use a specific meta-metaclass. Figure 2 below pro-
vides an example excerpted from VisualWorks version 5i.4 [27]. This system

10

«metaclass»
Behavior

—— > subclassOf

********* > instanceOf AN

buildtimeAdd «metaclass»
ClassDescription|

[= \

Object «metaclass» «metaclass»
Class Metaclass

7N

«metaclass»
Object class

~

Magnitude «metaclass»
Magnitude class

~

«metaclass» J «metaclass»
AbsentClassimporter clas: AbsentClassimporterMetaclass

AbsentClassimporter

Fig. 2. Example of a meta-metaclass use in Smalltalk-80 (only main instantiation
links are drawn).

enables loading a class whose superclass is absent from the system. It in-
troduces new subclasses at the three levels: meta-metaclass AbsentClassim-
porterMetaclass, metaclass “AbsentClassimporter class” and class AbsentClas-
slmporter.

For having a Component Type created as an implicit metaclass, in the context of
rules imposed by this model, programmers should subclass the “Object class”
metaclass or one of its sub-metaclasses. Since implicit metaclasses are entirely
managed by the Smalltalk system, a Component A corresponds in this model
always to the sole instance of the ComponentType “A class”. Definition of an
adaptation C of the Component A inherits from A itself, while its metaclass
“C class” inherits from “A class”.

Illustration

Code portions below give the elements of the Smalltalk code corresponding
to the implementation of the Videostore example by means of implicit meta-
classes. Fig. 3 provides the corresponding class diagram. Classes and meta-
classes built par computer professionals appear in gray while those created by

11

«metaclass»
Object class

— > subclassOf Object
********* > instanceOf
buildtimeAdd Q $«metaclass»
runtimeAdd Videotape Videotape class
-isRented | -title
-renter -rentalPrice
-rating
JANRRVAN
Terminator Spiderman ! .
«metaclass» «metaclass»
R Terminator class| Spiderman class|
) e e S — From— -
| |
term1 term2 | |

Fig. 3. Class & instance diagram of the Videostore example, with “Implicit Meta-
classes” design.

domain experts are hatched.
We first have to define Videotape as a subclass of Object:

Object subclass: #Videotape
instanceVariableNames: ’isRented renter ’
category: ’Videostore’

This creates also automatically the implicit metaclass “Videotape class” which
is the ComponentType metaclass for videotapes. Here “Videotape class” will
play the role of Movie in the TypeObject design above. We still need to add
the instance variables of Movie, i.e., title, rentalPrice, and rating to “Videotape
class”. The resulting class hierarchy is as follows:

Object class ()
Videotape class (title rentalPrice rating)

The creation method defined in this metaclass produces subclasses of Video-
tape whose title is received as argument:

Videotape class>>title: aString

| sbcl|

sbcl := self
subclass: aString asSymbol
instanceVariableNames: ’’
category: ’Videostore’.

sbcl initTitle: aString.

“sbcl

12

Which requires the initialization method:

Videotape class>>initTitle: aString
title := aString.

Now the access method:

Videotape class>>rentalPrice
“rentalPrice

is needed for

Videotape>>rentalPrice
“self class rentalPrice

The instance variable movie is no longer necessary. This link corresponds now
to the instantiation link, managed by the Smalltalk virtual machine (the class
message). This ensures better performances for AOMs.

Videotape>>movie
“self class

The remainder of the code is identical.

In the same spirit as the scenario above, the expert can now add new video-

tapes. The code that is executed behind the scene, since the expert uses a
GUI, is as follows:

|term terml term2 joel
term := Videotape title: ’Terminator’.

so that after making several cassettes of this new movie:

term new.
term new.

terml
term2 :

they can be rented to customers:

joe := Customer new.
terml rentTo: joe. etc...

In this setting, the movie Terminator is represented by a subclass of Video-
tape - the fact that this subclass might be named Terminator is of secondary
importance. What is essential is that the metaclass “Terminator class” is auto-
matically a subclass of “Videotape class”. Seen as an object, class Terminator
inherits the three instance variables defined in Videotape class, i.e. title, rental-
Price, and rating as well as the associated behavior. These instance variables are

13

set when the subclass is created, by means of the creation method Videotape
class>title: which calls the initializer initTitle:. In this way, class Terminator is
fully equipped as a metaobject for the instances it generates, which represent
individual cassettes of the movie Terminator. This setting is fully compatible
with the object-oriented paradigm both from conceptual and technical points
of view.

Now users will have to deal with instances of e.g. class Terminator (renting
them to customers), with the creation of instances (buying new cassettes for
the store), and with the creation of such classes (introducing new movies
into the system). Note that creating a subclass at run-time does not require
a different GUI than instantiating an existing class. The code we propose
is easily packaged with a GUI which will completely hide the difference in
implementation to both end-users and domain experts - but not, of course, to
programmers!

The adaptations of Videotape like Spiderman and Terminator are now real sub-
classes. They can then be edited by programmers using their regular tools.
The evolutions of the class hierarchy by experts can then be easily inspected
and modified by professional programmers.

3.3 Use of Explicit Metaclasses

An alternative model to Smalltalk-80 implicit classes is that of “explicit” meta-
classes. Object-oriented languages that implement this model allow program-
mers choosing explicitly the properties of their classes [23] by choosing its
metaclass upon the creation of each class. This approach has been adopted
by several systems, e.g. CLOS, Classtalk [28], and SOM. The prototype that
we have developed here uses the MetaclassTalk system [18]. MetaclassTalk !
is a reflective extension of Smalltalk-80. It results from a series of research
on metaclasses and their use for defining class properties, starting with the
ObjVlisp model and Classtalk system [28]. MetaclassTalk addresses the meta-
class composition and compatibility issues [29]. Smalltalk virtual machine is
used for runtime support. Its latest release, that we have used, uses the Squeak
flavor.

Figure 4 below illustrates how to implement a specialization in the context of
MetaclassTalk explicit metaclasses. The example provided here is a refactoring
of the excerpt of VisualWorks provided in Figure 2.

MetaclassTalk provides the class Object and the metaclass StandardClass as
extension points. Object is the root of the class hierarchy where properties of

! http://csl.ensm-douai.fr/MetaclassTalk

14

— > subclassOf —

L
********* > instanceOf Object «metaclass»

buildtimeAdd K StandardClass|, |

FT

«metaclass»
AbsentClassimporterMetaclass|

AbsentClassimporter

N
«metaclass»

AbsentClassimporterClass

Fig. 4. Example of a specialization using explicit metaclasses.

non-classes are defined. StandardClass is the root of both the metaclass and the
meta-metaclass hierarchies. Note that a metaclass is a meta-metaclass if its
instances are also metaclasses, i.e. if they inherit (directly or not) from Stan-
dardClass. Adding a new abstraction systematically implies the extension of
only one of the hierarchies described above. This extension is done explicitly.
The programmer explicitly designates the superclass of the new abstraction.
The programmer also explicitly chooses the type of the created class, by choos-
ing the metaclass of the new class. Support for adapting classes relies then on
the metaclass hierarchy.

In this context, to have their component types created as explicit metaclasses,
programmers should subclass the StandardClass metaclass or one of its sub-
metaclasses. As for the component class, it can be created with any appropriate
superclass, e.g., Object. The choice of its metaclass is also only driven by the
application needs and can be any metaclass in the system that provides the
right behavior.

Hllustration

Code portions below give the elements of the MetaclassTalk code correspond-
ing to our running example.

We simply turn the implicit metaclass “Videotape class” of the design with im-
plicit metaclasses into an explicit, free-standing metaclass which we naturally
call Movie. Following normal practice in MetaclassTalk, as explained above,
Movie is created as an instance and subclass of StandardClass (see Fig. 5).

StandardClass subclass: #Movie
instanceVariableNames: ’title rentalPrice rating’

15

Obiect «metaclass»

——> subclassOf jec StandardClass,
********* > instanceOf !
buildtimeAdd JaN — |
runtimeAdd Videotape }
SRR N «metaclass» |

-renter - Movie

-title
Z‘l ZF. -rating

[| | }

Terminator Spiderman | \

| |

,,,,,,,,,,,,, !

8 ¢ |

! ! o ___!

term1 term2

Fig. 5. Class & instance diagram of the Videostore example, with “Explicit Meta-
classes” design.

category: ’Videostorel’
metaclass: StandardClass

Accordingly, class Videotape now appears as an instance of metaclass Movie:

Object subclass: #Videotape
instanceVariableNames: ’isRented renter ’
category: ’Videostorel’
metaclass: Movie

The resulting class hierarchy is as follows:

Object O
StandardClass (...)
Movie (title rentalPrice rating)
Videotape (isRented renter)

The creation method title: that was previously defined in the metaclass “Video-
tape class” is now the responsibility of Movie. Note that a typical receiver for
this method will be class Videotape.

Movie>>title: aString

| sbcl|

sbcl := self subclass: aString asSymbol
instanceVariableNames: ’’
category: ’Videostorel’
metaclass: self class.

sbcl initTitle: aString.

“sbcl

16

Same transfer for the other methods that were previously defined in “Videotape
class”:

Movie>>rentalPrice
“rentalPrice

Movie>>initTitle: aString
title := aString.

The remainder of the code is identical, and the scenario above can be repeated
without any change.

The decisive advantage of explicit over implicit metaclasses is the separa-
tion of the inheritance and instanciation hierarchies of class Videotape and of
metaclass Movie. This allows for arbitrarily complex designs, using standard
techniques (e.g. reuse) both for Videotape and for Movie.

This allows also for the construction of several levels of metaclasses, corre-
sponding to the “nested type objects” of Johnson & Woolf. Fig. 6 below
sketches the design for one of the extensions they add to the Videostore ex-
ample, where movies may belong to different movie categories. In our design,
MovieCategory is a meta-metaclass of which metaclass Movie is an instance.
Individual categories appear as metaclasses that are instances of MovieCat-
egory and subclasses of Movie. Class Videotape remains the same (instance
Movie of and subclass of Object). Individual classes representing movies ap-
pear now as instances of the various categories (meta-classes) and remain
subclasses of Videotape. In the example sketched in Fig. 6, there are two
movie categories (named First and Second,) and two mowvies, Terminator be-
longing to category First and Spiderman to category Second. Only two video-
cassettes are available, both of Terminator. Note that the structural pattern
of MovieCategory/Movie/First/Second is identical to that of Movie/Videotape/-
Terminator/Spiderman, so that this design is actually simpler than it seems at
first sight.

3.4 Discussion

The work communicated here is part of a larger-scale study, of which Razavi’s
doctoral dissertation [30] was the first version. It aims at designing a frame-
work for AOMs (called in [30] DYCRA? for DYnamic Class Refinement Ar-
chitecture). On the basis of the observations communicated here we plan to
improve DYCRA by the systematic use of metaclasses (e.g. metaclass com-

2 For more information please point to the URL: http://www-
poleia.lip6.fr/~razavi/Dyctalk/.

17

—— > subclassOf «metaclass»

,,,,,,,,, S instanceOf StandardClass,

|
buildtimeAdd |
|
runtimeAdd ’—ZIX % !
|
T «metaclass»
Object «m:ntacl_ass» | |MovieCategory
ovie L >l-categoryName
yay ; 7777777777 >:trlalt|t(ian -rentalPrice
. [g
Videotape | | ‘ 7
-isRented % ZE | !
-renter | | @ ===t ! !
«metaclass»| i|[«metaclass»| |
? 2 First | Second
Terminator, Spiderman
L | / | N
[’\} 77777 \K”*””*”’J
| Il |
} } S
term1 term2

Fig. 6. Class & instance diagram of the extended Videostore example, illustrating
the possibilities of the “Explicit Metaclasses” design.

position in the sense of Bouraqadi [19], Ducasse et al. [31]). The following
remarks are set in this perspective.

One of the key issues is that AOMs have to undergo phases of refactoring
where programmers will have to deal with a system on which experts have
made a number of adaptations. If the architecture of the adapted code is
complicated, then programmers will have a hard time doing their refactoring
job. They will require specific tools and adequate training - and a different
training for each new application.

This is why language-level support is essential, language being the common
ground for all programmers (generic tools, etc). In Section 2 we pinpointed
the mismatch problem due to an ad hoc architecture made necessary by the
absence of reflective features, and in section 3 we showed how metaclasses
can be used to solve this problem. Note that our design ensures that the
“dynamic” classes that are created at run-time inherit all their methods from
their “static” superclasses, so that the Smalltalk compiler is actually never
called.

With our technique, the code remains indeed structured as a set of classes
(as opposed to classes mixed with terminal instances in a design based on
Type Object) programmers may use any engineering technique, e.g., editing
adaptations using their regular editing tools, refactoring, even embedding a
micro-workflow architecture [32], etc. Moreover, the code is indeed simpler,
since a part of it disappears (the part of an AOM that represents the inter-

18

preter of the meta-level). The programming language itself is now called to
play this role. Programmers of AOMs can then concentrate on modeling the
business domain.

With implicit metaclasses (standard Smalltalk, section 3.2), metaclass reuse is
limited. This becomes a challenging issue in designing reusable, language-level
support for adaptation. That is, if we ant to empower AOM programmers
with predefined support for implementing ComponentTypes as metaclasses.
In this case, programmers should be able to develop their application-specific
ComponentTypes by extending and reusing existing default metaclasses. For
instance, the metabehavior associated to the metaclass “Videotape class” could
be provided by the framework, and not implemented by AOM programmers.

As we saw in section 3.3, explicit metaclasses (with MetaclassTalk) eliminate
this limitation. Infinite class hierarchies are indeed one of the AOMs funda-
mental features. MetaclassTalk appears therefore as a good candidate for an
implementation language suitable for AOM design.

However, there is a price to pay. Choosing classes instead of arbitrary objects
to represent meta-objects involves some limitations on the programmer’s free-
dom. Instances belonging to two different classes will not be able to share the
same meta-object. To follow Johnson & Woolf once more, a Videodisk and
a Videotape will not share exactly the same Movie meta-object, since they
belong to different classes - but they do not share the same rental price ei-
ther. Our technique will lead to creating two classes with the same metaclass,
e.g. TapeTerminator and DVDTerminator, and in order to express that these
two classes are realizations of the same film it will be necessary to provide a
supplementary ontological level in the same style as MovieCategory.

Also, changing the meta-object of a business object now involves changing its
class, which is a risky operation. This is an important design issue. The gist
of our approach is precisely to rely on language mechanisms, and paying the
price for it. If the verifications and restrictions that go with it are undesirable,
then our method is not the right one!

4 Related Work

Independently from AOMs, tool support for dynamic class specialization has
been subject to extensive research since several decades in the field of object-
oriented languages. Such a design has been introduced with Smalltalk-76. Ex-
tensions to that solution have also been subject to extensive research [25,26,33]
[29,18,24]. What is different in the case of AOMs is the need for two different,
but compatible, mechanisms for specialization. One is dedicated to program-

19

mers and the other to business experts.

Another comparable work is that around UML Virtual Machines [34], as well
as executable UML models with the UML diagrams being supported by Action
Semantics. There are two major issues with these approaches:

(1) the underlying solutions remain properties of private companies and have
not been sufficiently documented as standard and reusable solutions; and

(2) they promote programming by UML-based languages, which is far from
having gained popularity within the non-programmer business experts.
Empirical research in the field of end-user programming shows that busi-
ness experts are more likely to adopt domain-related solutions [13] and
not an object modeling language designed for programmers. AOMs al-
ready implement such solutions. We believe that the applicability of UML
profiles for building comparable solutions deserves more investigation.

AOMs are comparable with Domain Oriented Programming (DOP) languages,
described by Dave Thomas & Brian Berry in [35]. Both DOP languages and
AOMs embed a DSL (Domain-Specific Language). They are also designed “to
allow knowledgeable end users to succinctly express their needs in the form of
an application computation” [35].

Although the Squeak system [36] is not fundamentally designed for building
AOMs, it addresses analogous problems since it provides the plain program-
ming IDE as well as the EToy [37] interface. However, the pseudo-compatibility
between classes and adaptations (Player class and its subclasses created im-
plicitly during scripting by non-programmers using EToy) is achieved in an
ad hoc manner.

Finally, this research has been influenced by work on metatool design for
facilitating the creation of development tools that implement the “double-
metamodeling” approach advocated by the METAGEN group [38]. In this
system, one of the metamodels corresponds to a domain-related language for
specifying the requirements and the other one corresponds to a technology-
related language for expressing the implementation of these specifications. The
process of moving from specification models to implementation ones is semi-
automated, largely due to model transformation techniques, where NéOpus
[39] is used for expressing transformation rules. This experimental work, going
on since the early nineties, is closely linked with the more recent Model-Driven
Architecture (MDA).

20

5 Conclusions and Perspectives

AOMs allow building business applications through the collaboration of pro-
grammers and business experts. This approach has been chosen by pioneer
business organizations as a means to cope rapidly and cost-effectively with
the need to adapting their critical software to the business dynamics. Pro-
grammers manage of course all technical aspects of the development process.
Part of their responsibility is to empower business experts to specialize the
“default” class inheritance hierarchy of the system, by dynamically adding
new object types using domain-related constructs.

The current approach for creating AOMs (e.g. as documented by the DOM
pattern) relies on a non-reflexive programming style. This approach leads to
a series of issues that make the creation and maintenance of AOMs hard and
costly. In order to help building AOMs while avoiding issues of existing so-
lution, we explored in this paper the use of metaclasses. On the basis of this
study, we can conclude that languages offering explicit metaclasses provide
better support for adapting classes. MetaclassTalk is an example of such lan-
guage. Languages that implement implicit metaclasses, like Smalltalk-80, only
address part of adaptation support requirements. Indeed, they lead to a series
of issues, like the loss of natural inheritance as well as undesirable propagation
to a whole inheritance hierarchy of the choice of the metaclass.

Ledoux and Cointe observe that metaclasses are reifications that serve to vary
the default semantics of classes [23], and suggest considering each such varia-
tion as a class property. Our proposal can then be summarized as “adaptability
should be treated as a class property’.

A last point to discuss is the relative importance of the mismatch problem that
is the subject of this paper from the general point of view of AOM design.
This mismatch is certainly not the only reason for the difficulties with AOMs.
For instance, suppose you want to add a feature to a system. It can be added
by the expert using only the tools that the programmer gave him, or it can
be added by the programmer herself. The programmer can (and does) use the
expert’s tools, but the expert cannot use the programmer’s tools.

The problem this poses for the expert is that sometimes he wants to do some-
thing but can’t, and has to ask the programmer for help. The programmer
can either build a new tool to let the expert to do it (or change an existing
tool) or can just add the feature. Often the programmer does a little of one
and a little of the other.

The problem this poses for the programmer is that there are several ways to
reach her goal. Suppose that the expert can make a change by finding a set
of instances and changing all of them, or the programmer can make a tool

21

that does it all at once. Suppose the expert can implement a procedure by
making a complex workflow and reuse it by copying it and editing it, or the
programmer can implement it by adding a new primitive to the system. There
is no easy answer to the question “which is better ?”. An AOM requires the
programmer to be able to think of the system on several levels at once, and
most programmers are not educated to do this well.

So, which problems are most important? If mismatch with language features is
most important then our framework Dycra should make it measurably easier
to build AOMs. But if mismatch is a secondary issue then it might not. We
can not figure it out by hard thinking! The only way to tell whether mismatch
is the main problem is to try to eliminate it and see what happens. This
is the issue that we have addressed in this paper. Now we must experiment
with the large-scale framework to figure out its real impact. We plan such
experimentation in the course of a new project that aims at providing tool
support for building families of adaptive and personalized solutions in the
context of Ambient Intelligence [40].

Acknowledgments

The authors gratefully acknowledge the support from the Software Archi-
tecture Group (SAG) at UIUC and from the Metafor project at LIP6. This
research benefited from a UITUC-CNRS exchange program, directed by Gul
Agha and J.-P. Briot.

References

[1] J. W. Yoder, R. Johnson, The adaptive object-model architectural style, in: 3rd
IEEE/IFIP Conference on Software Architecture (WICSA3). IFIP Conference
Proceedings 224. Jan Bosch, W. Morven Gentleman, Christine Hofmeister, Juha
Kuusela (Eds.), Kluwer, 2002, pp. 3-27.

[2] R. Johnson, J. Oakes, The user-defined product framework, (unpublished
document).
URL http://st.cs.uiuc.edu/pub/papers/frameworks/udp

[3] F. Anderson, R. Johnson, The objectiva telephone billing system, in: MetaData
Pattern Mining Workshop), 1998.

[4] M. Tilman, M. Devos, A reflective
and repository-based framework. implementing application frameworks, in:
Implementing Application Frameworks (M.E. Fayad, D. C. Schmidt, R. E;
Johnson ed.), Addison-Wesley, 1999, pp. 29-64.

22

[5] R. Johnson, B. Woolf, Type object, in: Pattern Languages of Program Design
3, Robert Martin, Dirk Riehle, and Frank Buschmann, eds., Addison-Wesley,
1997, pp. 47-66.

[6] R. Johnson, Dynamic object model, (unpublished document).
URL http://st-www.cs.uiuc.edu/users/johnson/DOM.html

[7] J. W. Yoder, B. Foote, D. Riehle, M. Tilman, Metadata and active object-
models, in: Workshop Results Submission OOPSLA’98 Addendum, 1998.

[8] B. Foote, J. Yoder, Metadata and active object-models, in: Proceedings of
Plop98. Technical Report wucs-98-25, Washington University Department of
Computer Science, 1998.

[9] D. Riehle, M. Tilman, R. Johnson, Dynamic object model, in: Proceedings
of the 2000 Conference on Pattern Languages of Programming (PLoP 2000).
Technical Report number WUCS-00-29, Washington University Department of
Computer Science, 2000.

[10] J. W. Yoder, R. Razavi, Metadata and adaptive object-models, in: ECOOP’2000
Workshop Reader; Lecture Notes in Computer Science, vol. no. 1964, Springer
Verlag, 2000.

[11] J. W. Yoder, F. Balaguer, R. Johnson, Architecture and design of adaptive
object-models, SIGPLAN Not. 36 (12) (2001) 50-60.
URL http://doi.acm.org/10.1145/583960.583966

[12] A. Arsanjani, Rule object: A pattern language for pluggable and adaptive
business rule construction, in: Proceedings of PLoP2000. Technical Report
wucs-00-29, Washington University Department of Computer Science, 2000.

[13] B. A. Nardi, A Small Matter of Programming: Perspectives on End User
Computing, MIT Press, 1993.

[14] B. C. Smith, Reflection and semantics in lisp, in: Proceedings of the 11th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, ACM
Press, 1984, pp. 23-35.

[15] B. Foote, Objects, reflection, and open languages, in: ECOOP’92 Workshop on
Object-Oriented Reflection and Metalevel Architectures, 1992.

[16] B. Foote, R. E. Johnson, Reflective facilities in smalltalk-80, in: Conference
proceedings on Object-oriented programming systems, languages and
applications, ACM Press, 1989, pp. 327-335.

URL http://doi.acm.org/10.1145/74877.74911

[17] A. Goldberg, D. Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

[18] N. Bouragadi, T. Ledoux, Aspect-Oriented Software Development, Addison-
Wesley, Boston, 2005, Ch. 12 — Supporting AOP Using Reflection, pp. 261-282.

23

[19] N. Bouragadi, Safe metaclass composition using mixin-based inheritance,
Journal of Computer Languages and Structures 30 (1-2) (2004) 49-61, special
issue: Smalltalk Language.

[20] N. Revault, J. W. Yoder, Adaptive object-models and metamodeling techniques,
in: Ecoop 2001 Workshop Reader. kos Frohner (ed), LNCS, Springer-Verlag,
2001.

[21] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of
reusable object-oriented software, Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[22] J. F. Perrot, Objets, classes, hritage : dfinitions, in: In R. Ducournau, J.
Euzenat, G. Masini, and A. Napoli, editors, Langages et Modles Objets: Etats
des recherches et perspectives, chapter 1, INRIA - Collection Didactique, 1998,
pp. 3-31.

[23] T. Ledoux, P. Cointe, Explicit metaclasses as a tool for improving the design
of class libraries, in: In Proceedings of ISOTAS’96 - JSSST-JAIST, Springer-
Verlag, 1996.

[24] I. Forman, S. Danforth, Putting Metaclasses to Work, Addison-Wesley, 1999.

[25] P. Cointe, Metaclasses are first class: The objvlisp model, in: Conference
proceedings on Object-oriented programming systems, languages and
applications, ACM Press, 1987, pp. 156-162.

URL http://doi.acm.org/10.1145/38765.38822

[26] P. Cointe, The objvlisp kernel: a reflective lisp architecture to define a uniform
object-oriented system, in: P. Maes, D. Nardi (Eds.), Workshop on Meta-Level
Architecture and Reflection, North Holland Publishing Company, Amsterdam,
New York, Oxford, 1988, pp. 155-176.

[27] E. Miranda, Meta-programming in a flexible component architecture, in:
Metadata and Dynamic Object-Model Pattern Mining Workshop OOPSLA 98,
1988.

[28] M. H. Ibrahim, Reflection and metalevel architectures in object-oriented
programming (workshop session), in: Proceedings of the European conference
on Object-oriented programming addendum : systems, languages, and
applications, ACM Press, 1991, pp. 73-80.

URL http://doi.acm.org/10.1145/319016.319050

[29] N. Bouragadi, T. Ledoux, F. Rivard, Safe metaclass programming, in:
Proceedings of the 13th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, ACM Press, 1998, pp. 84—
96.

URL http://doi.acm.org/10.1145/286936.286949

[30] R. Razavi, Outils pour les langages d’experts — adaptation, refactoring et
rflexivit, Thse de doctorat, Universit Pierre et Marie Curie (Paris 6), LIPG6,
Paris, France (Nov. 2001).

24

URL
http://wuw-£ftp.1lip6.fr/ftp/lip6/reports/2002/1ip6.2002.014.pdf

[31] S. Ducasse, N. Schrli, R. Wuyts, Uniform and safe metaclass composition, in:
Proceedings of the ESUG Research Track. Also published in a special issue of the
Elsevier international journal ” Computer Languages, Systems and Structures”,
2004, to appear in 2005.

[32] D. A. Manolescu, Workflow enactment with continuation and future objects,
in: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, ACM Press, 2002, pp. 40—
51.

[33] J. P. Briot, P. Cointe, A uniform model for object-oriented langauges using the
class abstraction, in: In Proceedings of the Tenth Internationl Joint Conference
on Artificial Intelligence (IJCAI'87), Vol. 1, 1987, pp. 40-43.

[34] D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe, The architecture of a
uml virtual machine, SIGPLAN Not. 36 (11) (2001) 327-341.
URL http://doi.acm.org/10.1145/504311.504306

[35] D. Thomas, B. M. Barry, Model driven development: the case for
domain oriented programming, in: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, ACM Press, 2003, pp. 2-7.

URL http://doi.acm.org/10.1145/949344.949346

[36] M. Gudizal, K. Rose, Squeak - Open Personal Computing and Multimedia,
Prentice Hall, 1999.

[37] B. J. Allen-Conn, K. Rose, Powerful ideas in the classroom: using squeak to
enhance math and science learning, Comput. Entertain. 2 (1) (2004) 16-16.
URL http://doi.acm.org/10.1145/973801.973827

[38] N. Revault, H. A. Sahraoui, G. Blain, J. F. Perrot, A metamodeling technique:
The metagen system, in: Proceedings of TOOLS 16, 1995.

[39] F. Pachet, J. F. Perrot, Rule firing with metarules, in: Software Engineering
and Knowledge Engineering - SEKE ’94, Jurmala, Lettonie, Knowledge System
Institute, 1994, pp. 322-329.

[40] I. A. Group, Ambient intelligence: from vision to reality - for participation in
society & business (2003).
URL http://www.cordis.lu/ist/istag-reports.htm

25

