DynaGraph : a Smalltalk Environment for
Self-Reconfigurable Robots Simulation

Samir Saidani

Laboratoire GREYC, Université de Caen, France, saidani@info.unicaen.fr

Michael Piel

Laboratoire GREYC, Université de Caen, France, mpiel@etu.info.unicaen.fr

Abstract

In the field of self-reconfigurable robots, a crucial problem is to model a modular
robot transforming itself from one shape to another one. Graph Theory could be
the right framework since it is widely used to model different kind of networks.
However this theory in its present state is not suitable to model dynamic networks,
1.e. networks whose topology changes over time. We propose to inject a dynamic
component into graph theory, which allows us to talk about dynamic graphs in the
sense of a discrete dynamical system. To address this problem, we present in this
paper the theoretical framework of dynamic graphs. Then we describe the Smalltalk
implementation of a dynamic graph, allowing us to perform simulations useful to
understand the dynamics of such graphs.

Key words:
Self-Reconfigurable Robots, Dynamic Graphs, Dynamic Cellular Automata

1 Introduction

1.1 Self-Reconfigurable Robots

Our work is situated in the more general field of modular robotics research
and specifically in the area of self-reconfigurable robots. Self-reconfigurable
robots have the ability to adapt to their physical environment and their re-
quired task by changing shape. Some of the self-reconfiguring robot systems
are heterogeneous : some modules are different from the others, whereas in
homogeneous approach all the modules are identical.

ESUG Conference ~ 2004 Research Track (www.esug.org)

In the literature, we distinguish two kinds of work. The first one tries to define
elementary modules which can be human-assembled to rapidly build robots
dealing with specific problems. For example, RMMS [1] applies this approach
to build manipulators, as well as the Golem project [2] where "robots have
been robotically designed and robotically fabricated” and Swarm-bots [3] for
the design and implementation of self-organizing and self-assembling artifacts.

On the other hand, modular robotics look for self-reconfigurable structures.
In this case, the problem is often to build identical components which dy-
namically reconfigure themselves to adapt their behavior to a specific task.
Some works already done on this kind of self-organizing components include
the Molecule Robots [4], based on a single component with two elementary
movements, USC/ISI Conro [5] assembled as a serial chain with two degrees of
freedom and docking/dedocking connectors, I-Cube [6] modules, quite similar
but with three rotations. In the Crystalline robot [7], the elementary compo-
nent uses a 2D translation movement, Telecube [8] implements a 3D version
of this Crystalline component, PolyBot/Polypod [9] has a very rich structured
based on simple components and finally the MEL [10] proposes a two-rotation
element with a universal connecting plate allowing dynamic coupling. There
is already a lot of proposals, but we think there is still an interest in building
another kind of robotic atom : in our project, each module can move around
autonomously and connect each other to form a new robot. In this manner,
they act as ants : they can cooperate to achieve various tasks or they can form
a new structure by connecting themselves to cross a hole for instance.

1.2 The MAAM Project

The MAAM ! project, supported by the Robea project of the French CNRS,
aims at specifying, designing and realizing a set of elementary robots able
to connect each other to build reconfigurable systems. The self-reconfigurable
robot is based on a basic component called atom. An atom is defined as a body
with 6 orthogonal legs (see Figure 1). Each leg moves in a cone around his
axis and the extremity of a leg holds a connector allowing connection between
atom legs.

The goal of MAAM is to leverage this kind of atom to build dynamic re-
configurable structures called molecules. An advantage of such reconfigurable
structures is that atoms move autonomously and they find and move to other
atoms to connect with them by using their sensors on the end of each leg. In
a 2D plan, they build an active carpet by array connection. A snake robot
can be assembled to move into encumbered world. With a 3D structure, the
molecules climb on objects, transform itself into a tool, surround objects and

L' MAAM is a recursive acronym that means : Molecule = Atom | Atom + Molecule

(a) An atom (b) A spider

Fig. 1. MAAM Project atoms and molecules

manipulate them. This project leveraged the cooperation of researchers from
different fields : robotics, electronics, computer science, mechanics... Several
french universities are involved in this project: Université de Paris VI (LIP6),
Université de Caen (GREYC), Université de Bretagne Sud (LESTER and
VALORIA), Laboratoire de Robotique de Paris.

1.8 Self-Reconfiguration Algorithms

A self-reconfigurable robot is ideally composed of cheap elementary units.
The cheapness constraint makes an industrial manufacture possible and has a
direct consequence on self-reconfiguration algorithms design. These algorithms
must be the simplest one since the power calculus of the units is very weak.
Therefore we think that reconfiguration algorithms requiring the description
of the target shape are not relevant in this perspective.

So we are especially interested in distributed reconfiguration algorithm not
requiring the exact description of the target shape. Thus Bojinov et al. (2000)
[11], [12] proposed biologically inspired control algorithms for chain robots, us-
ing growth, seeds and scents concepts to make the target shape emerge from
local rules. Another approach designed by Butler et al. (2003) [13] [14] is based
on architecture-independent locomotion algorithms for lattice robots, inspired
by the cellular automata model. Abrams and Ghrist (2003) [15] considered
geometrical properties on a shape configuration space adapted to paralleliza-
tion.

Actually we are looking for a general approach to tackle self-reconfiguration for
different kind of modular robots. Modular robots are modules networks, and
networks are usually modeled by graphs, ideal to stress the relation between
entities. We can for example express the modules connectivity by bounding the
degrees of a graph, unidirectional and bidirectional connections by directed or
undirected edges... However, the reconfiguration of a modular robot implies

the evolution of the modules network topology, and thus of its underlying
graph.

Modeling the evolution of a network topology is quite hard to capture in
graph theoretical model, which is essentially static. The fundamental work on
random graphs, by Erdos and Rényi [16] was the very first attempt to add
dynamicity in a graph. Recently, interest has grown among graph theoretician
in dynamic graphs, and especially in dynamic algorithms able to incrementally
update a solution on a graph while the graph changes. To represent a dynamic
graph, Harary (1997) [17] proposed dynamic graph models based on logic
programming and the study of the sequence of static graphs. Ferreira (2002)
[18] proposed a model called ”evolving graph”, whose definition is based upon
an ordered sequence of subgraphs of a given digraph. But this given digraph
induces an a priori knowledge on the dynamic process.

In the following sections, we will try to answer two main questions : how to
model the modules network of a self-reconfigurable robot and how to design
self-reconfiguration algorithms so that a self-reconfigurable robot converges to
the required shape 7

2 Modeling Self-Reconfigurable Robots with Dynamic Graphs

2.1 FEmergent Calculus

We are looking here for a way to control the convergence of dynamic graphs
- modeling modules network - to a target topology by emergent calculus,
that is to say the modules do not know the goal configuration and the final
configuration emerges from the modules collective behavior.

We would like too to found the notion of dynamic graph in the area of dy-
namical systems. A dynamical system is characterized by a configuration space
and a function defined on this space: the goal is to understand the dynami-
cal behavior of this function according to the structure of the configuration
space and to the property of the function. Dynamical system theory is a rich
and well developed field and we hope to benefit of research and results of this
field by defining a dynamic graph as a special dynamical system. Moreover,
extending the modeling power of graph theory on dynamic network should
be interesting since dynamic networks seem to appear fundamental in very
different fields as it was recently stressed by Albert and Barabasi [19].

In addition, to take into account the distributed nature of a lot of observed
phenomena, we would like the graph topology to evolve in a decentralized way

with local and simple rules : each node has a local knowledge on its neigh-
borhood and a limited power for computation and communication. Cellular
automata are well known for their ability to express complex dynamics from
the local knowledge of the cells. The underlying lattice of a cellular automata
is usually static, but Ilachinski and Halpern (1997) [20] developed a cellular
automata model in which the underlying infinite d-dimensional array (i.e. the
metric space Z?) evolves according to link transition rules. But the very for-
mulation of this model, expressed through the array data structure, is not
relevant to express a graph topology. Let us note also that link transition
rules depend on the states of cells neighborhood and we are looking for purely
“topological” rules.

To combine graph theory expressness with richness of cellular automata dy-
namic, we define the notion of topodynamic of a graph, with the assumption
that a module only knows about its neighborhood and the neighbors of its
neighborhood.

The last part is devoted to the validation of the framework proposed in the
following section, by building a dynamic graph implementation in Squeak [21]:
we present the overall architecture behind the DynaGraph software and show
an example of simulation where the final topology emerges from the dynamic
nodes collective behavior.

By this way, we hope to transform the shape controlling problem into the
study of graph topodynamic, where simulation should be a valuable tool in
discovering of topodynamics converging towards a given topology.

2.2 Topodynamic of a Graph

We first remind basic notions in graph theory and then state a topological
definition of a graph independent of its embedment in metric space. We finally
define the notion of graph topodynamic.

2.2.1 Preliminaries

Definition 2.1 (Graph) A graph is a pair (V, E) with V a finite set of ver-
tices and E a set of edges, finite subset of V x V.

A graph is undirected if the relation defined on V is symmetric, otherwise
the graph is directed, and edges have a direction. The order of a graph is its
number of vertices |V|. Two vertices are said to be adjacent if they are joined
by an edge.

The neighborhood of a vertex v is the set 7(v) of vertices such that they are
adjacent to v. If there is no ambiguity with the context, we note a neighbor-
hood 7(v) = {x,y,...,2} by zy...z. The out-neighborhood of a vertex v is
the set 77 (v) of vertices outgoing from v. The in-neighborhood of a vertex v is
the set 7~ (v) of vertices pointing to v. We see that an undirected graph (resp.
directed graph) is completely described by giving the set of its vertices and
a neighborhood (resp. in-neighborhood or out-neighborhood) on each vertex.
The degree (resp. indegree, outdegree) of a vertex is the number of its neigh-
bors (resp. in-neighbors, out-neighbors). The degree of a graph, noted d°(G)
is the maximum degree of a vertex. Note that for an undirected graph, each
edge v, w could be considered as a double arrow (v, w) and (w,v), so the in-
neighborhood is equal to the out-neighborhood of a vertex.

Definition 2.2 (Graph Topology) The topology T (resp. T*, 77) of a graph
G is the family of its neighborhoods (T,)vey (Tesp. out-neighborhoods (7,1)yev,
in-neighborhoods (T,)yev).

Example 2.3 Let G be the following graph :

a

AN

N

The neighborhood T(a) of a is {b,c} or in short bc. We have also the following
relations: 77 (a) = be, 77 (a) = b, 7(c) = ade, 77(c) =d, 77 (c) = ae, d°(G) =
3 because |7(c)| = 3. The graph topology is the family (77 (a), 77 (b), 77 (c), 77 (d),

7 (e))

2.2.2 Topodynamic
Let us now define the notion of a sequence of graphs.

Definition 2.4 (Sequence of Graphs) A sequence of graphs is a family of
graph (G;)ien with G; = (Vi, 7).

For simplicity, we consider from now only sequence of graphs with constant
order, i.e. Vi € N, V; = V.

What is the difference between a sequence of graphs and a dynamic graph
? Usually, a dynamic system is characterized by its transition function : we
can compute the state of the system from an initial state and past states.

Basically, the graphs in a sequence of graphs cannot change their topology on
their own : the evolution of the topology is predetermined by giving a family
7; of topologies. However, we can associate a transformation function to a
sequence of graphs. So we call dynamic graph a sequence of graphs consisting
of an initial graph and a function which transforms its topology to a new
topology.

Definition 2.5 (dynamic graph - global transition function) A dynamic
graph is the pair (Go,A), such that Gy = (V,79) is an initial graph and
A (V= 2Y)— (V= 2Y) define a topodynamic by mapping a topology
on V' to a new topology.

So the topodynamic is an algorithm taking as input a graph and giving as
output a graph of the same order. More precisely, this algorithm takes a node
and its neighborhood of the input graph and computes a new neighborhood
for this node. It continues to compute over all the nodes of the input graph
to render the output graph. Then this output graph becomes the input graph
and we apply the topodynamic again. This whole process draws the dynamic
graph.

Nevertheless, we would like to have dynamic graph vertices more active than
in a sequence of graphs, namely able to change their own degrees by accept-
ing, keeping or removing its adjacent edges, according to local transition rules
inducing the graph topodynamic. Local transition rules are widely used in
cellular automata area: the state of an automaton depends on its own state
and the state of its neighbors. Local transition function, simultaneously ap-
plied to each cell, determine the dynamic of a cellular automaton. Although
cellular automata are usually defined on regular lattices, this definition can be
extended to more complicated graph: graph of automata (connected bounded
degree graph), first introduced by Rosenstiehl (1966) [22]. In a graph of au-
tomata, each node has a state and the next state depends of its current state
and the state of its neighbors.

Definition 2.6 (graph of automata) A graph of automata is a triplet (S, G, 0)
where S is a finite set called set of states, G = (V,T) is a graph, § : S X
{(SU¥E g} + S is the transition function where € is a special element
used when the vertex has less than the maximum degree of the graph. o is the
equivalence relation defined on the cartesian product S™ with xoy if © is a
permutation of y. So S™ /o is the unordered set S™.

In this definition of graph automata , the underlying graph is static. We study
here the possibility to have an evolving underlying graph : this evolution may
be controlled by active vertices, kind of automata able to connect and discon-
nect their own edges in the network. We give to the automata the control of
its underlying graph by slightly modifying the graph automata definition as

following.

Definition 2.7 (dynamic graph - local transition function) A dynamic
graph is the pair (Go,d) where G = (V,19) define an initial graph, and 0 :
Sx {(SuelVIml /gy s S with S = 2V the set of states, define the local
transition function, where € is a special element used when the vertex has less
than |V| — 1 (the mazimal degree of the dynamic graph).

A node chooses its next neighborhood according to its current neighborhood
and the current neighborhood of its neighbors. If we replace “neighborhood”
in the precedent sentence by the word “state”, we retrieve the usual definition
of the evolution of a cell in cellular automata.

To deal with the different neighbors of a given neighborhood, we build from the
application 7 an application 7 which for each vertex gives its neighbors vector
7 {v}— ({1,...,|7(v)|} — V) such that Ull(f)' T(v)(i) = 7(v) where v € V

If a vertex v has a degree n, its next state 7;11(v), namely its next neighbor-
hood, is given by :

T () = 8(1(0), (R @)L, . . ., (F@)(N)), €, .. ., €)

We define now the fix-point topology for a given topodynamic as a graph
topology unchanged by applying this topodynamic.

Definition 2.8 (fix-point topology) A fiz-point topology T for the topody-
namic A is a topology such that A(T) =T

A question we may ask is for which topodynamic a given topology is the fix-
point, i.e. the so-called inverse dynamic problem. For the moment the design of
such topodynamic rules is rather a matter of intuition supported by computer
experimentations, but resolving the wnverse dynamic problem would provide
us with a means of constructing a desired topology, or at least to show us
the impossibility to automate this construction. Anyway the simulation of
dynamic graphs should be valuable to address this problem.

3 DynaGraph : an Environment for Dynamic Graph Simulation

We present here the DynaGraph environment intended to understand and
simulate the dynamic of a graph, following the theoretical framework stated in
the first section. Through this environment, we hope a better understanding
of the dynamic graphs behavior. For instance, we could ask what kind of
dynamic graph converges to a path graph when the initial graph is a star

graph, so we have to define the relevant rules allowing such a convergence. We
also need to implement this rules to gain trust on this rules before proving
their correctness.

3.1 The DynaGraph Environment

Let us imagine that we want to reconfigure a spider robot, represented to the
left of Figure 2, to a caterpillar robot. Each node represents a module, and
directed edges the connection between modules.

/

Fig. 2. A star to chain reconfiguration

The expression DynaGraphSystemWindow open launches the DynaGraph GUI
(Fig. 3).

r@ = DynaGraphSystemWindow Eilte)

Actiong| Clear| Inspect | Metrics| Graphs [Visual On/Off

EIE Transcript (E](=)]

Fig. 3. The DynaGraph System Window

The DynaGraph window (Fig. 3) is currently composed of two parts : the
first one is the gui interface and the second one is for debugging purpose.

Several buttons allow the user to start, stop or run the simulation step by
step. The user chooses the initial graph of the dynamic graph thanks to the
Graphs button. Several metrics 7.e. function of the graph at the current step
are available, like degree distribution, clustering coefficient and average path
length, to gain some information during the evolution of the dynamic graph.
We use the PlotMorph package [23] to display such kind of informations (see
Figure 4).
[FIE Metrics Evolution Ei0)

N Degres Distribution Coefficient Clustering Average Path Length
5 GOS0 0, TN

=
==

=
o

A

A
(69/2) fif (6%/2) il

1
|

Fig. 4. Dynagraph metrics

We have enhanced this package to export the curves in the gnuplot format to
exploit thouroughly the collected data. Note that we have also implemented a
GraphSystemWindow to deal with graphs, e.g. random graphs, so the metrics
are available for this graphs. For instance, Figure 5 shows the degree distri-
bution of a single random graph of 10000 nodes and a connection probability of
0.0015, generated through the exampleRandomGraphWithOrder:probability:
method. We verify that the deviation is small between the generated ran-
dom graph and the theoretical result stating that for large N, the proba-
bility for a node to have a degree k follows roughly a Poisson distribution
P(k) =~ e PN 2N

The simulation shows in Figure 6 that after few steps the initial star topology
is transformed into an undirected acyclic graph to finally reach a fix-point.
The local topodynamic rules, when applied to the neighborhood of each node,
does not change their neighborhood anymore. We show thanks this simulation
that it is possible to make a topology emerge from a local topodynamic rule.

3.2 Overview of the DynaGraph Architecture

The dynamic graph classes are build on top of graph classes, designed in
Smalltalk by Mario Wolczko and ported for Squeak by Gerardo Richarte and

10

Distribution Degree

sinulation +
theory

P{k}, percentage of nodes of degree k
=
=
]

a 5 18 15 28 25 38 35
degree k

Fig. 5. The degree distribution resulting from the simulation of a random graph
(N = 10,000 nodes, connection probability p = 0.0015).

X= DynaGraphSystemWindow @0
[start| stop| Step | Silent Step | Clear all| Clear edges| Update edges| Distribution degree| Average path length| Inspest layout|Graphs
¥

® Transcript @
nighbors : a Se(1] (2] (3] (4] 5
= Al
node after step :[2]
neightors : a Set([z])
node before step : (1]
neighbors ¢ a Set{[1] [2]}
node after step :[1]
neighbors : a Set([1]) -

Fig. 6. The chain, fixpoint topology

Luciano Notarfrancesco. A GraphMorph class is available, allowing us to lay-
out a graph through two main methods : a springs-gravity model where each
node behave like negative electrical particles and an animated radial layout.
We use the springs-gravity model to display a dynamic graph.

Several principles are used behind a local topodynamic design. These prin-
ciples are not really specific to one particular transformation, but they are
rather a guide for designing a topodynamic :

e RECONFIGURATION : the reconfiguration is done thanks to the knowledge
of a neighborhood node and of the neighborhood of the node neighbors.

11

It can disconnect from its current nodes to reconnect itself to a neighbor
of its neighbors.

e LOCAL KNOWLEDGE : A node knows only its own indegree and outdegree
(computed from its knowledge of its in and out-neighbors) and the in and
outdegrees of its direct neighbors (computed from its knowledge of in and
out-neighbors of its neighbors).

e OUTGOING CONNECTION CONTROL : A node only controls its outgoing
connections, it cannot decide to disconnect itself from an ingoing connec-
tion but can connect to or disconnect from its outgoing connections.

e DECISION PROCESS : To take a decision, for instance a reconnection to
another node or a disconnection, a node may exploit the dissymmetry of
its neighborhood. Indeed if a node wants to reconnect itself to a neighbor
of one of its neighbors, it has to check its neighbors degree and take a
decision according to the neighbors degree. If all neighbors have the same
degree, the reconnection to the neighborhood neighbors will be random
: from the node point of view, there is no way to decide which neighbor
of its neighbors to choose since all its neighbors have the same degree.
Otherwise it will exploit the dissymmetry related to the difference of
degree. For that reason, we have to avoid the ring topology because of
the possibility to lose graph connectivity.

e CONNECTIVITY : A node must never be isolated during the reconfigura-
tion process.

e UNIFORMITY : All nodes have the same set of rules.

e SYNCHRONICITY : The topodynamic rules, ¢.e. a combination of discon-
nection and connection rules, are applied simultaneously over all the
nodes. The computation must hold synchronous nodes reconfiguration
although it could be interesting to study how asynchronicity influences
the reconfiguration process. But we choose to study first a synchronous
dynamic since it is the simplest one : we have not to choose which nodes
the rules must apply first, all nodes are equivalent according to the ap-
plication of rules.

These principles constraint the implementation of a dynamic graph : for in-
stance, synchronicity means that we have to take care about the way each
node changes its neighborhood. Indeed if a node changes its neighborhood,
one of the neighbor of this node must not see immediately this change... The
global architecture of a dynamic graph, or dynagraph, is pictured in Figure 7.

Moreover, to control the evolution of a dynamic graph, we have added the
MetaGraph class, which is composed of the list of graphs computed during the
evolution of a dynamic graph. This class could be seen as an equivalent of
the space-time diagram used in cellular automata simulation and allows us to
keep trace of the different states of a dynamic graph. The more important and
critical method of this class is the method oneStep which is implemented as
following :

12

Collzction

A
The controller
GraphLayoutMorph | -7 " -
Graph
graph 2
nodeToMarph
edgeToliorph
focusiode
AN
~
~
~
~
~ P
~
T ~ Gragh
e Graph maintains a MetaGraph
raj
DynaGraphMorph ~ P list of its L
S nodes iteration
Type graphs
nodeCreator Femirm
addEdgs: oneStep
I addiode: currentD¥nabraph
ControllerView | graph: hasReachedFixedPoint
of Dynagraph ||
MetaGraph
maintains a
list of its
GraphNede
DynaGraph &
DynaGraph
walue
metagraph knows it
metagraph D
= =
| .
~
GraphNodeMorph
node
DynaNode ExplicitGranhNod:
P P

neighbors

S addNeighbor:

|

DynaNodeRule

DynaNodeRule TreeToPath

disconnestSomeNods
disconnectll

step

DynaNodeRuleStarToPath

step

step

Fig. 7. The DynaGraph Architecture

| nextDynaGraph |

nextDynaGraph := self currentDynaGraph veryDeepCopy.
"we enter to the next iteration, all nodes will refer
to the precedent iteration to compute their neighborhood"
iteration := iteration + 1.
(nextDynaGraph nodes asArray shuffledBy: random)
do: [:node | node step].

self addGraph: nextDynaGraph.

nextDynaGraph

Let us take an example to understand how to get synchronous processes.
Suppose that there is only one rule applied to all nodes : a node disconnects
from the other one if and only if its indegree is 1, that is to say if there is a
node connected to itself.

13

) <~—80

The node labelled 1 is in this case, so it will disconnect from the node 2 :

o <— 0y

If all this process was sequential, at the next step, the node 2 will keep its
connection since its indegree is now O, but we would like to focus our study
on parallel updates. So this behavior is not the desired one, the right result
for parallel update is the following:

LS >

So we will copy the current graph to a new graph, then we will modify the
nodes neighbors of the new graph according to the neighborhood, and neigh-
bors neighborhood of the previous graph. In this manner, we simulate the fact
that each node changes their neighborhood simultaneously.

3.3 OQwerview of the Implementation

The DynaNode class corresponds to the notion of dynamic node as explained
in the Topodynamic section and implements the abstract method step. A
dynamic node is essentially a set of rules defining the dynamic aspect of a
node, so it makes sense to derive the DynaNodeRule class from the DynaNode
class. Then we can use this facility to give a name to a specific DynaNode like
DynaNodeRuleStarToPath and so on. The DynaNodeRule class implements the
main methods allowing the evolution of the neighborhood of a given graph.
Here is a sample of main methods involved in the graph reconfiguration:

e The method disconnectNode0OfOutDegree: anInteger tries to disconnect
the current node from a neighbor of outdegree anlnteger and return true.
If it fails, return false.

e The method connectToNgb0fMyNgb connect the current node to any neigh-
bor of its neighbor.

e The method connectToNgb0fNgb: connect the current node to any neighbor
of its neighbor v.

e The method connectToNodeOfInDegree: anInteger connect the current
node to a node of indegree anlnteger.

e The method connectToOne0fMyStrictInNgb connect the current node to
one of its strict in-neighbors, namely in-neighbors which are not out-neighbors.

14

e The method connectToOutNgbOfNgb: connect the current node to somekindof
out-neighbor of its neighbor v.

e The method connectToNode: connect the current node to the node w.

e The method disconnectToAnyOutNode disconnect the current node from
one out-neighbor.

From the DynaNodeRule class, we derive a class which implements the method
step expressing the local topodynamic as explained in the first section, i.e. a
topodynamic depending of the neighborhood and of the neighbors neighbor-
hood. For instance, the method step of the DynaNodeRuleStarToPath class
implements four local reconfiguration rules [24] :

DynaNodeRuleStarToPath>>step

self extremeNodeClosure.

self extremeNodeReconfiguration.
self starLosingleaves.

self middleNodeReconfiguration.
~ self.

The self-reconfiguration algorithm is based on three main rules applied one
time for each step :

e RECONFIGURATION: Threads want to find an extremity.
(extremeNodeReconfiguration and middleNodeReconfiguration)

e NODE CLOSURE: Closing all links when a path is formed.
(extremeNodeClosure)

e STAR LOSING LEAVES: Disconnect from some of many out-neighbors.
(starLosingLeaves)

It would be very long to explain and develop the code of all this rules, which
are currently available in the SqueakSource site under the name DynaGraph.
Here is a piece of code giving an idea of how the rules are generally coded :

DynaNodeRuleStarToPath>>starLosingleaves

self currentOutDegree >= 3
ifTrue: [self disconnectAnyQOutNode]

DynaNodeRuleStarToPath>>middleNodeReconfiguration
"principle : a middle-initial vertex walks around the graph

till it finds an extremity"
self isMiddlelInitial

15

ifTrue:
[self currentUnclosedOutNeighbors loneElement isAnExtremity not
& self currentUnclosedOutNeighbors loneElement isMiddle not
ifTrue: [

self reconnectToOutNeighborhoodOfNode:

self unclosedOutNeighbors loneElement]]

Let us notice an important point when we design rules : the difference be-
tween the methods inNeighbors, outNeighbors... and the methods prefixed
with the term “current”, like currentInNeighbors, currentOutNeighbors... The
first ones are the accessors of the nextDynaGraph (see the method oneStep
above) whereas the second ones refer to the DynaGraph of the current itera-
tion. This distinction is necessary to keep the dynamic synchronous, as it was
explained above. So the conditional part of a rule must refer to the DynaGraph
of the current iteration whereas the action part must refer to the DynaGraph
under construction, that is to say the nextDynaGraph. So we have always to
care about which kind of DynaGraph is concerned : the one of current iteration
or the one in progress.

3.4 Building its own dynamic graph

To create a dynamic graph with a specific rule, we have implemented the class
method dynamicDirectedWith: which takes as argument a DynaNodeRule
class:

DynaGraph dynamicDirectedWith: DynaNodeRuleStarToPath.

The usual way to add a new dynamic graph in the DynaGraph environment
is to add a class method to the class DynaGraph :

exampleMyDynaGraph
| d |
d := self dynamicDirectedWith: DynaNodeMyOwnRule.

d addEdge: 1 -> 2.
d addEdge: 2 -> 4.
d addEdge: 4 -> 2.
d addEdge: 2 -> 3.
d addEdge: 3 -> 2.
e

Of course, we have to first create the DynaNodeMyOwnRule class by deriving
it from the DynaNodeRule class and using the methods defined in this class, or
creating our own methods. The when we start the GUI, the exampleMyDynaGraph

16

appears when we press the Graphs button in a pop-up menu :

® = TronaftranhCoctamWindow
X DynaGraph_ﬂ
example

examplelynabraph

examplelynabraph?

examplelatticelfSize:

examplelittleCycle

exampleLittleCycleZ
examplelittleUndirectedTres
exampleMyDynabraph
exampleRandomGraphWithOrder: probability:
examplescaleFreeGraphWithOrder istarting With:

exampleTalk

exampleTalkBis
exampleTreeToChain
exampleUndirectedDynabraph
exampleUndirectedTres
examplelUndirectedTree:

exampleVeryLittleTree
exampleVeryLittleTree2

Step) Actions) Inspect | Metrics| Graphs

_
Fig. 8. Running a dynamic graph

If we want to keep trace of the dynamic graph evolution, we can use the
MetaGraph class as following: MetaGraph new setInitialDynaGraphTo:
(DynaGraph dynamicDirectedWith: DynaNodeRuleStarToPath)

4 Conclusion

This work presents a framework based on graph topodynamic and cellular
automata intended to address the problem of controlling modules network
topodynamic.

After introducing the field of self-reconfigurable robots, we have defined the
notion of dynamic graph by proposing to make a distinction between sequence
of graphs and dynamic graphs: a dynamic graph is a sequence of graphs where
a local or global topodynamic determines the topological evolution of a graph.

Then we have described the smalltalk implementation of this framework :
since a topodynamic can be defined from the local knowledge of each vertex,
we can use an oriented-object language, and Squeak helps us to prototype and
validate quickly and easily our framework.

The most interesting feature offered by Squeak is the debugging facilities which
are crucial for developing self-reconfigurable algorithms. For example, we have
implemented the inspection of a node during the simulation by shift-clicking
on a node in the DynaGraphWindow. This is a great advantage compared
since it is possible to modify topodynamic rules during the simulation of a
dynamic graph. This possibility allows us to find out several reconfiguration
algorithms in few weeks, including the time spent to develop the gui. For a
research project, it is really valuable since we would like to test quickly some
concepts without spending a lot of time to implement those ideas, and Squeak

17

plays the perfect role of “notebook for concepts implementation”. But we feel
at the present state of this work one limitation : it is hard to simulate dynamic
graphs with a large number of nodes. The current limitation is around 30 nodes
which is sufficient to test our ideas but not sufficient to gain some statistical
information about the dynamic of a graph. Maybe have we now to implement
some parts in C which fortunately is one of a feature of Squeak, although we
would prefer to stay in the Squeak environment.

This simulator should help us in rules discovery involved in the emergence of
different network topologies : from a connected graph to a chain graph, from
a lattice to a chain, from a chain to a lattice, and so on. This software [25] is
available as a package in the Squeakmap site, a server providing applications
designed for Squeak, and is available too in the SqueakSource site.

Let us note that the MAAM project is in fact a long-term project composed
of several subprojects like sQode, a plugin to interface Squeak with ODE
(Open Dynamic Engine), SqueakSimulAtom, a 3D robots simulator, LCSTalk,
a Learning Classifier System framework... We expect to have the first molecule
with 10 elementary components in 3 years.

Acknowledgment

This work was supported by an MENRT Research Studentship, and is a part
of the MAAM Project. We thank Serge Stinckwich for its valuable comments
and to allow us to participate in the MAAM project, with the support of
Francois Bourdon. We wish to thank also Stéphane Ducasse and the anony-
mous reviewers whose comments permit us to really improve this paper.

References

[1] C. J. J. Paredis, P. K. Khosla, Fault tolerant task execution through global
trajectory planning, Reliability Engineering and System Safety (special issue
on Safety of Robotic Systems) 53 (3) (1996) 225-235.

[2] H. Lipson, J. B. Pollack, Automatic design and manufacture of robotic lifeforms,
Nature 406 (2000) 974-978.

[3] Swarmbots.
URL http://www.swarmbots.org

[4] K. Kotay, D. Rus, M. Vona, C. McGray, The self-reconfiguring molecule: Design
and control algorithms, in: Workshop on Algorithmic Foundations of Robotics,
1999.

18

[5] W. Shen, P. Will, Docking in self-reconfigurable robots, in: Proceedings
IEEE/RSJ, IROS conference, Maui, Hawaii, USA, 2001, pp. 1049-1054.

[6] C. Unsal, P. Khosla, A multi-layered planner for self-reconfiguration of a
uniform group of i-cube modules, in: IROS 2001, 2001.

[7] R.Fitch, D. Rus, M.Vona, A basis for self-repair using crystalline modules, in:
Proceedings of Intelligent Autonomous Systems, 2000.

[8] S. B. H. John W. Suh, M. Yim, Telecubes: Mechanical design of a module for
self-reconfigurable robotics, in: Proceedings, IEEE Int. Conf. on Robotics and
Automation (ICRA’02), Washington, DC, USA, 2002, pp. 4095-4101.

[9] M. Yim, D. Duff, K. Roufas, Polybot: a modular reconfigurable robot, in:
Proceedings, IEEE Int. Conf. on Robotics & Automation (ICRA’00), Vol. 2,
San Francisco, California, USA, 2000, pp. 1734 —1741.

[10] A. Kaminura, al, Self reconfigurable modular robot, in: Proceedings IEEE/RSJ,
TROS conference, Maui, Hawaii, USA, 2001, pp. 606-612.

[11] H. Bojinov, A. Casal, T. Hogg, Multiagent control of self-reconfigurable
robots Comment: 15 pages, 10 color figures, including low-resolution photos
of prototype hardware.

URL http://arXiv.org/abs/cs/0006030

[12] H. Bojinov, A. Casal, T. Hogg, Emergent structures in modular self-
reconfigurable robots, in: Proceedings, IEEE Int. Conf. on Robotics &
Automation (ICRA’00), Vol. 2, San Francisco, California, USA, 2000, pp. 1734
—1741.

[13] Z. Butler, D. Rus, Distributed planning and control for modular robots with
unit-compressible modules, International Journal of Robotics Research 22 (9)
(2003) 699-716.

[14] Z. Butler, K. Kotay, D. Rus, K. Tomita, Generic decentralized control for a
class of self-reconfigurable robots, in: Proceedings, IEEE Int. Conf. on Robotics
and Automation (ICRA’02), Washington, DC, USA, 2002, pp. 809-815.

[15] A. Abrams, R. Ghrist, State complexes for metamorphic robots, International
Journal of Robotics Research In press.

[16] P. Erdds, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung.
Acad. Sci. 5 (1960) 17-61, a seminal paper on random graphs. Reprinted in Paul
Erdds: The Art of Counting. Selected Writings, J.H. Spencer, Ed., Vol. 5 of the
series Mathematicians of Our Time, MIT Press, 1973, pp. 574-617.

[17] F. Harary, G. Gupta, Dynamic graph models, Math. Comput. Modelling 25 (7)
(1997) 79-87.

[18] A. Ferreira, On models and algorithms for dynamic communication networks:
The case for evolving graphs, in: 4° rencontres francophones sur les Aspects
Algorithmiques des Télécommunications (ALGOTEL’2002), Meze, France,
2002.

19

[19] R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Rev.
Mod. Phys. 74 (2002) 47-97.

[20] lachinski, Halpern, Structurally dynamic cellular automata, COMPSYSTS:
Complex Systems 1.

[21] Squeak, an open-source smalltalk.
URL http://www.squeak.org

[22] P. Rosenstiehl, Existence d’automates finis capables de s’accorder bien
qu’arbitrairement connectés et nombreux, International Computer Science
Bulletin 5 (1966) 245-261.

[23] Plotmorph, morphs to draw xy plots.
URL http://minnow.cc.gatech.edu/squeak/DiegoGomezDeck

[24] S. Saidani, Self-reconfigurable robots topodynamic, in: Proceedings, IEEE Int.
Conf. on Robotics & Automation (ICRA’04), New Orleans, Louisiana, USA,
2004, pp. 2883 2887.

[25] Dynagraph, a dynamic graph simulator.
URL http://www.squeaksource.com/DynaGraph

20

