
© copyright 1997-2004 John M McIntosh, all rights reserved. Page 1

Garbage Collection in Smalltalk

* By John M McIntosh

- Corporate Smalltalk Consulting Ltd.

- http://www.smalltalkconsulting.com

- johnmci@smalltalkconsulting.com

*
* Maintainer of the Squeak Macintosh VM.
* Squeak TK4 VM support {Ask me later about TK4}
* Trip reports for OOPSLA, Camp Smalltalk, etc.

For ESUG 2004

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 2

Garbage Collection - a worldly view

* Internet group postings in the last year:

- “I eventually 'killed' the thing by enumerating over it
and using 'become' to transform it into a string.”

- “What happens to Threads when they die? Do they go
to heaven? Or does the garbage collector take them
away?”

- “Just a thought that there is a dead object seating (sic)
in my memory listening to events and doing funny
things without my knowledge is scary and can produce
hard to debug behavior.”

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 3

Reference Counting

* Each object has a counter to track references.

* As references to an object are made/deleted, this counter is
incremented/decremented.

* When a reference count goes to *zero*, the object is
<usually> deleted and any referenced children counters get
decremented.

2

Root 1

1

1
0

deleted

1

cascade delete
to children

A

B

C

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 4

Mark/Sweep
Mark/Sweep & CompactionRoots

M
M

M

M

• Mark accessible objects.
• Sweep all objects, and now we realize,
• unmarked objects A, B, and C are free

Expensive optional compaction event
clumps results together making free space
one big block.

M

A

B

C

DE

F

H
G

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 5

Copying - The Flip or Scavenge

* When FromSpace is full we *flip* to ToSpace:
- Copy roots of the world to ToSpace.
- Copy root accessible objects to ToSpace.
- Copy objects accessible from root accessible objects to ToSpace.
- Repeat above until done.

* Cost is related to number of accessible objects in FromSpace.

Root Root

A

B

C

D

A D B

C

FromSpace ToSpace

Flip

Notice the change of Placement
and that E isn't copied.

E

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 6

Generational Garbage Collector

* Separate objects by age into two or more regions.
- For example: Tektronix 4406 Smalltalk used seven regions, 3 bits

Pat Caudill (1945-2001)

* Allocate objects in new space, when full then copy
accessible objects to old space. This is known as a
scavenge event.

* Movement of objects to old space is called tenuring.

* Objects must have a high death rate and low old to young
object references. (Eh?). . . Both very important issues, I'll
explain in a few minutes.

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 7

Generational Scavenge Event

RootA

B

C

E

A

D

B CRoot

Remembered Table (RT)

New Space

E

Old Space

A B and C get copied via Root
reference. E is copied via OldSpace
reference from D, which is
remember by being stored in the
Remember Table.

-> tenure ->

InterGenerational References

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 8

VM Failure at end of chart, Why?
Log scale

Of RT entries

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 9

Squeak Memory Layout
Generational Mark/Sweep Compacting

VM code

VM variables, plugins, DLLs

0x40000000
startOfMemory

0x40ABFDEF
youngStart

0x40EBFDEF
endOfMemory

Virtual Memory
File mapped Block
used to store image.
Grows and shrinks

On demand

0x60000000
End of VM Block

Applies to Squeak VM that support
Virtual Memory file mapping and
ability to grow/shrink image space
(win32, some unix, mac os-9/os-x)
Issues with non 32bit clean code
limit object space to first 2GB of
Address space.

+

Malloc free space

G
R
O
W
T
H

Actual address
depends on mmap

Old

Young

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 10

IBM VisualAge Memory Layout v5.5.1
Generational Copying (compacting optional)

semi-space - A

semi-space - B

NewSpace

OldSpace (RAM/ROM)
Fixed
Old
Space

* Generational Copy Garbage Collector & Mark/Sweep.
* Copy between semi-spaces until full
* Then tenure some objects to current OldSpace segment
* Object loader/dumper can allocate segments (supports ROM)
* EsMemorySegment activeNewSpace
* To set current NewSpace semi-spaces size. Default is 262,144 in size
* abt -imyimage.im -mn###### (Start with ### byte in NewSpace)

Code
Cache

262,144

262,144

Segments (lots!)

Text

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 11

VisualWorks Memory Layout V5.i2

Generational Copying, + Incremental Mark/Sweep
(Compacting optional)

* Allocate objects or headers in Eden (bodies in Eden, Large, or Fixed).

* Full? Copy Eden and active semi-space survivors to empty semi-space.

* When semi-space use exceeds threshold, tenure some objects to OldSpace.

* Once in OldSpace, use a Incremental Mark/Sweep GC to find garbage.

semi-space A

semi-space BEden

LargeSpace

RT OldSpace

PermSpaceORT

FixedSpace
Stack

Code
Cache

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 12

SurvivorSpace small, watch how objects get tenured

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 13

1 Compact GC event: Full mark/sweep/compact OldSpace

2 Compacting decision has been made

3 IGC justified, interruptible, full cycle via idle loop call

4 Idle Loop Entered

5 Low Space Action Entered via VM trigger

6 Incremental GC, (work quotas) attempt to cleanup OldSpace

7 Request grow; Grow if allowed

8 LowSpace and we must grow, but first do aggressive GC work:
Finish IGC, do OldSpace Mark/Sweep GC, if required followup
with OldSpace Mark/Sweep/Compact

9 Grow Memory required

10 Grow Memory attempted, may fail, but usually is granted

Key to GC Events

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 14

SurvivorSpace larger, less objects get tenured

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 15

Beware trade-off is complex, bigger SurvivorSpace =? Poor Performance

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 16

100,000 Logarithmic scale

Object Table Data Entries

1st Unit of Work

2nd
Unit of
Work

Time Taken, (work units are same computation effort)

10,000

1,000

<- Initialization process ->

Impact of pre VW 5.x single free chain performance issue
First unit of work takes 10x longer than 2nd unit of work. Why?

100

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 17

Incorrect IGC work loads, IGC never completes

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 18

Better IGC work loads, IGC always completes

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 19

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500

Case 1: User interaction test case before changes

6 Compaction events + 9 Quick GC events

10 Grow OldSpace

8 Finish IGC+Quick GC

2 Need to Compact
1 Compact event

3 IGC justified

OldSpace - Free Memory

460 Seconds

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 20

0

2

4

6

8

10

12

3 Compaction events + 5 QuickGC events versus 6 and 9

IGCAcceleration factor changed
from 5 to 15. More GC work done in
idle loop processing so fewer GC events

10 Grow OldSpace

8 Finish IGC+Quick GC

Case 1: User interaction test case after changes,

Old Case was ~460 seconds, we save 130 secs

2 Need to Compact
1 Compact event

3 IGC justified

330 Seconds

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 21

Algorithm issues
causes interesting
growth pattern

500-800MB server application, issues with algorithms

Forced GC
and object purging
frees 400MB,
an ugly solution

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 22

Note
Allocation free
Chain
performance
Problem, shows as
gaps in the data

Old space is forced to shrink, then it grows!

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 23

Different VW 7.x 300 MB client application, note Mark/Sweep completions

This looked OK,
not much room
to improve
things

Gaps are CPU related

Lots of Tenuring here Less Tenuring here

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 24

500 MB un-tuned vw7 server app, note IGC ceilings and excessive GC activity

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 25

Before any tuning we saw:

Event Total
1 Compact 33
2 Compact Need 6
3 Full ILIGC 46
4 Idle Loop 260
5 Low Space 1921
6 Run IGC 1793
7 Request Grow 129
10 Grow 129

Grand Total 4317

After tuning effort:

Event Total
3 Full ILIGC 10
4 Idle Loop 177
5 Low Space 1224
6 Run IGC 1224

Grand Total 2635

Mission Critical VW 3.x 400-500MB application
Before & After, shows what serious tuning can do

Zero code tuning was done.
Application improved a few % for
each SUnit test case. Keyboard
responsiveness became “snappy”.
Got rid of mystery lock-ups, a core
dump (or two), and reduced the
number of GC cursor events.

© copyright 1997-2004 John M McIntosh, all rights reserved. Page 26

Garbage Collection in Smalltalk

* By John M McIntosh

- Corporate Smalltalk Consulting Ltd.

- http://www.smalltalkconsulting.com

- johnmci@smalltalkconsulting.com

* Maintainer of the Squeak Macintosh VM.
* TK4 VM support {Ask me later about TK4}
* Trip reports for OOPSLA, Camp Smalltalk, etc.

For ESUG 2004

