
abcdefg

awu030828 1

Smartcard-Login into Gemstone

An exercise in applied security

by

Alfred Wullschleger,
Swiss National Bank

abcdefg

awu030828 2

Disclaimer
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

This Material is a copy of the presentation at the ESUG 2003, Bleed,
Slovenia.

It has been developed by Alfred Wullschleger,
Swiss National Bank.

Any liability is explicitely excluded.
This publication completely reflects opinions of the author.
The Swiss National Bank shall not be bound by any
information contained herein.

You may send comments
to: wully@bluewin.ch

or to: alfred.wullschleger@snb.ch

-----BEGIN PGP SIGNATURE-----
Version: PGP 8.0

iQA/AwUBP1MlRIBkqNDRsW06EQINYACg63d2yK0GCdIz0f2IQcfWupyx1fwAoO4Q
px5moaJuaAkPTCCgtxq5+iNK
=bMoJ
-----END PGP SIGNATURE-----

abcdefg

awu030828 3

Talk and Technical Discussion

● Two Parts

– first Part (this Talk): Presentation of the ideas

– second Part: Technical discussion
● code examples

● demonstrations

● details of the implementation
– as requested by the audience

abcdefg

awu030828 4

The Author

● Smalltalker since 1992, never ending enthusiasm

● Project OVID at FIDES Informatik (1992-1999)

● Leading the project OASE at SNB since 1999

– Financial statistics from Swiss banks and Swiss
companies

– Fully object oriented application using VW3.0 and
Gemstone as development base

abcdefg

awu030828 5

Motivation

● Gemstone Login uses username and password

– Both are sent over the network in clear text

– passwords are typically „trivial“ by User
requirement?!

● Smartcards (SC) have many advantages

– Very high security
● User must have the card and a password for the card

– Even relatively trivial passwords are acceptable since
the SC is completely disabled after 3 trials

abcdefg

awu030828 6

Smartcards at SNB

● Smartcards will be introduced in the Bank during
2004

● Goal is Single Signon

– OASE is one of the first applications which today are
ready for Smartcard logon

abcdefg

awu030828 7

Smartcard Login

How to implement?

abcdefg

awu030828 8

Gemstone Prerequisites

● Logon uses username and password

– Password size 1024 byte maximum

– Password expiration can be set to exactely one logon

● So, we can use a „complicated“ One-Time-
Password, we call it EPW (from german)

– format can be choosen appropriate

● Smartcard can be combined with GS:

– use a Logonserver

abcdefg

awu030828 9

Logonserver Gemstone-DB

Server machine

logon traffic normal GS traffic

critical connection
Clientapplication(uses priviledged

GS login for setting
of EPW)

abcdefg

awu030828 10

Logonserver (LS)

● LS runs on the same machine as the GS server(s)

– this guarantees the exchange of critical data with GS
without network traffic

– handles all GS servers on the same machine

– handles all client logon requests for these servers

– is implemented as a headless VW3.0 application
● so it runs wherever we want (AIX, Win2000, Linux,

WinXP...)

● runs as TCP/IP-Server

abcdefg

awu030828 11

LS basic operation
Client

Request User Credentials

Logon wit EPW accepted

LogonServer GemstoneServer

Request EPW

check User Credentials
Supply User Credentials

verify User

generate and set EPW

encrypt EPW
send encrypted EPW

decrypt EPW

Logon with EPW

red = encrypted

abcdefg

awu030828 12

LS basic operation

● the client requests his EPW from LS

● LS verifies with GS, that user is ok

– (i.e. has credentials and a user account)

● LS generates EPW and sets it in GS for one use

● LS encrypts the EPW and sends it to the client

● the client decrypts the EPW and makes normal
GS login with his username and the EPW

abcdefg

awu030828 13

LS has two concurrent modes

● SC-RSA (Smartcard-RSA-mode)

– The user uses a Smartcard with RSA-signature keypair

● PW-DH (Password-Diffie-Hellman-mode)

– The user has no Smartcard
● a forgotten Smartcard should not prevent the user from

logging into GS

● this mode must be activated in GS for each user
individually by administrators, if in SC-RSA-mode before

abcdefg

awu030828 14

We need a secure
data exchange Client <> LS

● Exchange of secret data through encryption

– we use Blowfish block cipher

● Each session Client-LS must have a session key

– can be generated by using Diffie-Hellman (DH)
technique

– how does DH work?

abcdefg

awu030828 15

Diffie-Hellman part1

● creation of one secret for two parties

● based on the cyclic group Zp = {1,2,3...p},
where p is prime.

– this is equivalent to multiplication of natural
numbers modulo p

– p size large, typically > 256 bits

● use a common base b ∈ Zp, e.g. 65537

● each party selects a secret random number
rj > 1, typically large. j=1,2

abcdefg

awu030828 16

Diffie-Hellman part2

● each party calculates pubj = (b ** rj) mod p,
so, pubj ∈ Zp

● both parties publicly exchange their pubj

– we call pubj the DH-Halfkey of party j

● each party calculates key = (pubj)**ri mod p

– (j = other, i = self)

● Since (b**ri)**rj == (b**rj)**ri, both parties get
the same key!

abcdefg

awu030828 17

LS connection start
Client

open Socket on LS port

LogonServer

create DH halfkey, sign it

„connection accepted“ with DH halfkey and signature

if needed:
Client may generate
its own DH halfkey
and so calculate the
session key for
Blowfish

abcdefg

awu030828 18

LS connection start (both modes)

● As soon as a connection to LS is established

– LS creates a Diffie-Hellman halfkey for generation of
a session key

– LS signs this halfkey, so that a user can verify, that
he is connected to a legal LS

– LS sends this information as a „connection accepted“
message to the client

– this is done irrespective of the mode wished by the
client

abcdefg

awu030828 19

SC-RSA Overview
Client

Request RSA User Credentials

Logon wit EPW accepted

LogonServer

Cleartext Request EPW SC-RSA(username, servername)

GemstoneServer

get X.509-certificate for user signature
Supply User Credentials

generate EPW

set EPW

send RSA-encrypted EPW
encrypt EPW by User public RSA-Key

decrypt EPW using
Smartcard

Logon with EPW

abcdefg

awu030828 20

SC-RSA part1

● User requests EWP in SC-RSA-mode

– parameters: GS servername, GS username

– sent in clear text to LS

● LS requests X.509-Certificate for the user from
GS

– LS generates EPW and sets it in GS

– LS RSA-encrypts EPW using signaturekey from the
X.509-Certificate

abcdefg

awu030828 21

SC-RSA part2

● LS sends encrypted EPW to client

– if the user has the corresponding Smartcard, he can
decrypt the EPW, if not, the information from LS is
useless

● user decrypts EPW with his Smartcard

– makes login in GS, using GS username and EPW

abcdefg

awu030828 22

PW-DH Overview
Client

Request DH User Credentials

Logon wit EPW accepted

LogonServer

Blowfish Encrypted Request EPW PW-DH(username, servername, password)calculate DH session key

send encrypted EPW
encrypt EPW with Blowfish with session key

GemstoneServer

get DH-UC
Supply User Credentials

decrypt DH-UC by Blowfish
using SHA-1 hashed password
verify username in result

generate and set EPW

decrypt EPW using
Blowfish with
session keyLogon with EPW

abcdefg

awu030828 23

PW-DH part1

● client requests EWP in PW-DH-mode

– parameters: GS servername, GS username, password

– client generates halfkey for DH-Keyexchange

– creates with the halfkey from LS the session key for
blowfish encryption

– sends EPW request encryted to LS together with his
halfkey

● LS decrypts EPWrequest

– by that gets servername, username and password

abcdefg

awu030828 24

PW-DH part2

● LS gets encrypted PW-DH-credentials for
username from GS

– GS stores PW-DH-credentials as blowfish-encrypted
username plus randomdata

– password is hashed with SHA-1 to get a blowfish key
● Watch out: hashing does not help if password is trivial

– These data are generated by interaction of an
administrator with the user

● when RSA-SC is used, PW-DH-credentials are ereased

abcdefg

awu030828 25

PW-DH part3

● LS decrypts PW-DH-credentials using the
password, if ok:

– LS generates EPW and sets it in GS

– LS blowfish-encrypts EPW using the sessionkey

● client receives and decrypts EPW

– makes login in GS, using GS username and EPW

abcdefg

awu030828 26

Implementation issues

Encryption,
Formats of EPW etc.

abcdefg

awu030828 27

RSA basics

● use two secret primes p and q:

– get n = p*q, a large number (1024 bit)

– select a number e with gcd(e,(p-1)*(q-1))=1

– e typically 65537 (or 17 or 3)
● n and e form the public key for encryption

– calculate d so that ed == 1 mod(p-1)*(q-1)
● n and d form the secret decryption key

abcdefg

awu030828 28

RSA implementation

● Security is based on factorization being a hard
problem

● RSA is fully implemented in VW7.*

– we have ported it to VW3.0
● was very easy

abcdefg

awu030828 29

Blowfish

● Block cipher defined by Bruce Schneier, 1994

– encrypts 64-bit-Blocks

● uses keylength between 128 and 448 bit

– we use 256 bit keys

● we use CBC-Mode

– each block is XORed with the preceeding
encryptedBlock, first block with an InitialVector

abcdefg

awu030828 30

Sizes

● RSA-keys on SC and signing key of LS: 1024bit

● Diffie-Hellman parameters

– p: currently 256 bit

– base = 65537

● EPW

– 20-byte random ByteArray converted to
LargePositiveInteger

● giving a passwordstring of 48 to 49 digit characters

abcdefg

awu030828 31

XML for all requests/responses

● XML as exchange format between Client and LS
– To avoid escape sequences like ' etc., we are using

integer formats throughout all exchanges which use
encryption

– The ByteArrays are converted using „asLargePositiveInteger“

● this is compatible with PKCS#1-specification of conversion
between bytes and integers

abcdefg

awu030828 32

LS Answer on Socket accept:

– <XmlResponse>
<Validation>true</Validation>
<DhCode>1588342583341664246536080884883637711967782785292526
5980146286745390962263576</DhCode>
<ServerDHSignatur>1837090060268423857924167053495562451884751
288762027596014818947508697902699959279787764051953251210518
835088865241327868618698753687189866681129504242203066018314
921615856755804950286871069415444994298422094470968257289272
110594464664365849721683826653601332531687887166125489512675
5085488495158339417264534</ServerDHSignatur>
</XmlResponse>

● User can verify the Signature of the LS

abcdefg

awu030828 33

SC-RSA basic format

● SC-RSA-request from client to LS is unencrypted:

– <RSAEPWRequest>
<Server>lightning</Server><User>rog</User>
</RSAEPWRequest>

● SC-RSA-response from LS to client:

– <EinmalPasswort>254036481566762758850660080224084753875223586
838390721369209245892308754789435119113869732769585450706139
953046640274448442599416470993396942547126224650088959281761
150591890399102073665906605091766315849615345087595361055920
327412405609537797569746156102333670979136662194517047330045
30461339320939262107515</EinmalPasswort>

abcdefg

awu030828 34

SC-RSA improved

● we could improve the protocol by requesting,
that the client has to sign the LS halfkey

– so, we avoid setting EPW for a user, who has no
corresponding X.509-certificate on GS for the SC

● has more computing overhead

– could avoid denial-of-service-attacks
● disable user, if repeatedly illegally requesting an EPW

● this is implemented for ticket requests (see
later)

abcdefg

awu030828 35

PW-DH request

● Internal PW-DH-Request:

– <XmlEPWRequest>
<Server>lightning</Server>
<User>awu</User><Password>xxxxxx</Password></XmlEPWRequest>

● encrypted PW-DH-Request:

– <XmlEPWRequest>
<DhCode>2815747482711583432974205332271263279346890877810142
0710560243267932546510264</DhCode>
<EinmalPasswortRequest>421701460956386515843309546275011481111
952142904853134983891656694841409986396784019003171859680754
920531201111390893851148664959465630186555935507756945874285
836772314488857119582594456372386721952350160342234743728624
71711709551746300760031120608509510132548629714428</EinmalPass
wortRequest>
</XmlEPWRequest>

abcdefg

awu030828 36

PW-DH response

● Encrypted Response from LS:

– <EinmalPasswort>391016871021610782724341211645684570668712594
970979368692619795917841928462118545730795848292112003218739
3806816930803570651576119091883739061802251407795
</EinmalPasswort>

abcdefg

awu030828 37

Other Functions of LS

Tickets

abcdefg

awu030828 38

XML-Bulkserver

● OASE data can be requested from the so called
XML-Bulkserver which is fully XML-based

– Like LS a headless VW3.0-application

● The user must login into GS to access the data

● How can this be achieved when the user must
supply an EPW?

– by an XML-Ticket which allows access to GS

abcdefg

awu030828 39

Logonserver
Gemstone-DB

Server machine

XML-BulkServer

ticket request XML-requests
critical connection

XML-Clientapplication

abcdefg

awu030828 40

XML-Ticket Overview for PW-DH

send encrypted Ticket

decrypt DH-UC by Blowfish
using SHA-1 hashed password
verify username in result

generate Ticket(timestamp, username,
servername) with signature
encrypt Ticket with Blowfish with session key

Blowfish Encrypted XMLRequest PW-DH(username, servername, password)calculate DH session key
BulkServer ClientLogonServer GemstoneServer

Request DH User Credentials

get DH-UC

as
 fo

r E
PW Supply User Credentials

decrypt Ticket using
Blowfish with
session key

send decrypted Ticket

Ticket accepted

abcdefg

awu030828 41

XML-Ticket Overview for SC-RSA

send encrypted Ticket

Blowfish Encr. XMLRequest (username, servername, signed LS-DH-halfkey)

Request RSA User Credentials

calculate DH session key
BulkServer

Encryption not necessary,
but simplifies code

ClientLogonServer GemstoneServer

get X.509 cert.
Supply User Credentials

verify LS-DH-halfkey signature
with X.509-user public key

generate Ticket(timestamp, username,
servername) with LS signature
encrypt Ticket with Blowfish with session key

decrypt Ticket using
Blowfish with
session key

send decrypted Ticket

Ticket accepted

abcdefg

awu030828 42

XML-Ticket basics

● The user requests an XML-Ticket from the LS

● When the user is allowed to access the database,
LS creates a ticket

– contains servername, username and a timestamp for
validity checking.

– the ticket is signed by LS

● The ticket must be presented to the Bulkserver
within a short period (currently < 10 seconds).

abcdefg

awu030828 43

XML-Ticket checking

● The Bulkserver checks the ticket:

– verifies the signature of LS

– checks the timestamp
● also verifies, that this ticket has not already been used

– uses the servername to access GS
● today, we do not restrict access for read for legal users,

because of that there is no check necessary for the
username

abcdefg

awu030828 44

XML-Ticket modes

● PW-DH and SC-RSA use the same technique for
sending the ticket to the client:

– the ticket format has no difference for both modes

– the ticket is encrypted using blowfish with the DH-
sessionkey

abcdefg

awu030828 45

XML-Ticket formats

● The TicketRequest differs for both modes

– parameters: servername and username

● in SC-RSA the user signs the DH-halfkey from the
LS with his signing key

● in PW-DH the credentials for servername,
username are checked as for EPW using password

● these requests are both sent encrypted by
blowfish

abcdefg

awu030828 46

TicketResponse

– <XMLTicket>
<Server>dpssM700</Server><User>awu</User>
<XMLTicketTime>3233767397000</XMLTicketTime>
<XMLTicketSignature>15022795967277155422365835660918884813150
493043388515335841562848404653388507428348520470812988743204
684100581555360979769072404615410077936309726151332490571843
592914711119422903713287110926779070634207761829979664926899
476112082718024066167433468885019163386939230270203100939218
773849125730756896177136037</XMLTicketSignature>
</XMLTicket>

● identical for both modes

abcdefg

awu030828 47

Encrypted TicketRequest Format

● both modes send encrypted with Blowfish:
– <XMLLogonRequest>

<DhCode>4021923930769221418014505334054508087735352248076679
0930681240902947674828299</DhCode>
<EncryptedXMLLogonRequest>1013770570829590745205458228324819
952813554860299057479356650031543473116011689133005574889073
439715230885236966998448272871724104085738820437166598534732
977536812429181457436359960820992836673414486482059363023010
62332051528870082493408610500435018279009052905430115234</Enc
ryptedXMLLogonRequest>
</XMLLogonRequest>

abcdefg

awu030828 48

Internal SC-RSA TicketRequest

– <XMLRSARequest>
<Server>dpssM700</Server><User>awu</User>
<Password>106942665803893961652237782571282335715752848048653
488271645277633172859414869405045021075475426683763871005096
512550742078122566663290545340367303214617163684950078288221
884273972865236822265399295831080513274720629788515005292693
213055680355212564287254503022928044905763429004378965569364
748530842326832384</Password>
</XMLRSARequest>

● <Password> contains the signature of the DH
halfkey of the LS

abcdefg

awu030828 49

Internal PW-DH TicketRequest

– <XmlEPWRequest>
<Server>dpssM700</Server><User>awu</User>
<Password>xxxxxxx</Password>
</XmlEPWRequest>

● Same format as for EPW

abcdefg

awu030828 50

Batch-Tickets

● We plan, to introduce also Tickets for Batch-
Processing

– the user requests a ticket for a batch job at some
time at some date

– the LS delivers the ticket
● the batch job is responsible for the secure deposit of the

ticket until used

– the batch job presents the decrypted ticket at the
correct time/date and can be processed

abcdefg

awu030828 51

That's it!

Questions?

	Smartcard-Login into Gemstone
	Disclaimer
	Talk and Technical Discussion
	The Author
	Motivation
	Smartcards at SNB
	Smartcard Login
	Gemstone Prerequisites
	Logonserver (LS)
	LS basic operation
	LS basic operation
	LS has two concurrent modes
	We need a securedata exchange Client <> LS
	Diffie-Hellman part1
	Diffie-Hellman part2
	LS connection start
	LS connection start (both modes)
	SC-RSA Overview
	SC-RSA part1
	SC-RSA part2
	PW-DH Overview
	PW-DH part1
	PW-DH part2
	PW-DH part3
	Implementation issues
	RSA basics
	RSA implementation
	Blowfish
	Sizes
	XML for all requests/responses
	LS Answer on Socket accept:
	SC-RSA basic format
	SC-RSA improved
	PW-DH request
	PW-DH response
	Other Functions of LS
	XML-Bulkserver
	XML-Ticket Overview for PW-DH
	XML-Ticket Overview for SC-RSA
	XML-Ticket basics
	XML-Ticket checking
	XML-Ticket modes
	XML-Ticket formats
	TicketResponse
	Encrypted TicketRequest Format
	Internal SC-RSA TicketRequest
	Internal PW-DH TicketRequest
	Batch-Tickets
	That's it!

