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ÿ Software becomes very large, more complex and constantly 
evolves

ÿ Software documentation is extremely important to cope 
with these issues
ÿ avoid design degradation
ÿ understand inner workings
ÿ implement correct behaviour

ÿ Documentation is often non existent or outdated
ÿ not active part of development process
ÿ documentation and implementation are separated
ÿ not robust w.r.t. evolution

Problems with Software Documentation
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ÿ Documentation technique used to highlight important 
design structures
ÿ design patterns, framework hotspots, collaborations, ...

ÿ Collection of source code artifacts
ÿ classes, methods, variables, ...

ÿ Two different kinds of software views
ÿ Extensional views
ÿ Intentional views

Software Views

Software View
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Extensional Views

View name

View artifacts

Drag & Drop
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Reduces interest of using software views

ÿ Manual enumeration of source code artifacts
ÿ Advantages
ÿ easy to define (drag & drop)

ÿ Disadvantages
ÿ not robust w.r.t. evolution
ÿ not scalable
ÿ not intention revealing

Extensional Views
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Intentional Views
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Complicates use of Intentional Views

ÿ Defined by means of an intentional description
ÿ executable expression in a programming language
ÿ view’s content is computed from the source code

ÿ Advantages
ÿ robust w.r.t. evolution
ÿ scalable
ÿ intention revealing

ÿ Disadvantages
ÿ hard to define (requires meta-programming skills)
ÿ risk to be overly general
ÿ requires detailed knowledge of the application’s internal structure

Intentional Views
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ÿ Combines advantages of extensional and intentional views
ÿ ease of use of extensional views
ÿ robustness and scalability of intentional views

ÿ  Inducing views
ÿ manually classify source code artifacts
ÿ automatically derive intention behind it

ÿ Techniques
ÿ Logic Metaprogramming 

ÿ to connect views to implementation
ÿ Inductive Logic Programming (Machine Learning)

ÿ to derive intention automatically

Induced Intentional Views
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ÿ Using a logic programming language (Prolog) at the meta 
level to reason about and manipulate programs at the base 
level (in Smalltalk)

ÿ Allows to define intentional views in a concise and 
declarative manner

ÿ SOUL
ÿ Interpreter integrated in VW
ÿ Contains extensive library of logic predicates that consult source 

code

Logic Meta Programming (LMP)
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ÿ Machine learning technique
ÿ Discovers a general pattern underlying a number of examples
ÿ Requires a set of examples and a background theory

Inductive Logic Programming

grandFather(tom,bob).
grandFather(tom,jim).
grandFather(tom,ellen).
grandFather(tom,bart).

father(tom,peter).
father(tom,marie).
father(peter,bob).
father(peter,jim).
mother(marie,ellen).
mother(marie,bart).

grandFather(?grandfather,?person) if
     father(?grandfather,?father),
     father(?father,?person).
grandFather(?grandfather,?person) if
     father(?grandfather,?mother),
     mother(?mother,?person).

Examples Background
Theory

Induced Logic Rules
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Software Views with LMP

ÿ Extensional
ÿ Logic facts (enumeration)
ÿ

ÿ

ÿ

ÿ Intentional
ÿ Logic rules (program)

class(ScExpression).
class(ScConsExpression).
methodInClass(analyse,ScConsExpression).
...

class(?method) if
   methodInClass(analyse,?method).
...

Induction algorithm
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Proof of concept experiment

ScExpression

newClosure
analyse

ScCons
Expression

newClosure
analyse

ScSequence
Expression

newClosure
analyse

SpecialForm
Handler

newClosure
handle:

IfHandler

newClosure
handle:

DefineHandler

newClosure
handle:
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Classified Items

analyser(classImplementsMethodNamed(ScExpression,analyse)).
analyser(classImplementsMethodNamed(ScConsExpression,analyse)).
analyser(classImplementsMethodNamed(ScSequenceExpression,analyse)).
...
analyser(classImplementsMethodNamed(SpecialFormHandler,handle:)).
analyser(classImplementsMethodNamed(DefineHandler,handle:)).
analyser(classImplementsMethodNamed(IfHandler,handle:)).
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Derived Rules

intention(analyser,<?class,?selector>) if
     analyser(classImplementsMethodNamed(?class,?selector)).

analyser(classImplementsMethodNamed(?class, handle:)) if
     methodSendsMessage(?class, handle:, newConverterFor:),
     methodSendsMessage(?class, handle:, newClosure),
     methodSendsMessage(?class, handle:, analyse),
     classInHierarchyOf(?class,Scheme.SpecialFormHandler),
     classInHierarchyOf(?class,Scheme.SpecialFormHandlerWithSuccessor),
     classInHierarchyOf(?class, ?class).

Redundant

defines intention
in terms of 
derived rules
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Derived Rules

analyser(classImplementsMethodNamed(?class, analyse)) if
     methodSendsMessage(?class, analyse, newClosure),
     classInHierarchyOf(?class,Scheme.ScExpression),
     classInHierarchyOf(?class, ?class).

analyser(classImplementsMethodNamed(Scheme.DefineRelHandler,handle:)).
Redundant
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ÿ Results show that intentions are discovered
ÿ Problems encountered
ÿ algorithm is sensitive to order of examples presented
ÿ sufficient number of examples is needed

ÿ rules are either too restrictive or too general
ÿ performance issues

ÿ Scalability
ÿ only two small experiments, no large-scale study yet

Discussion
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Prototype Tool Support
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ÿ Induced intentional views combine advantages of 
extensional and intentional views, while removing their 
respective disadvantages

ÿ Can be used to tackle software documentation problems
ÿ explicit link between source code and documentation by means of 

LMP
ÿ robust w.r.t. evolution

ÿ Can be integrated easily into already existing development 
tools

Conclusion


