
1

ESUG 2003
Induced Intentional Software Views

Tom Tourwé Johan Brichau
Andy Kellens and Kris Gybels

Programming Technology Lab
Department of Computer Science

Vrije Universiteit Brussel

2August 2003 © PROG, VUB

ÿ Software becomes very large, more complex and constantly
evolves

ÿ Software documentation is extremely important to cope
with these issues
ÿ avoid design degradation
ÿ understand inner workings
ÿ implement correct behaviour

ÿ Documentation is often non existent or outdated
ÿ not active part of development process
ÿ documentation and implementation are separated
ÿ not robust w.r.t. evolution

Problems with Software Documentation

3August 2003 © PROG, VUB

ÿ Documentation technique used to highlight important
design structures
ÿ design patterns, framework hotspots, collaborations, ...

ÿ Collection of source code artifacts
ÿ classes, methods, variables, ...

ÿ Two different kinds of software views
ÿ Extensional views
ÿ Intentional views

Software Views

Software View

4August 2003 © PROG, VUB

Extensional Views

View name

View artifacts

Drag & Drop

5August 2003 © PROG, VUB

Reduces interest of using software views

ÿ Manual enumeration of source code artifacts
ÿ Advantages
ÿ easy to define (drag & drop)

ÿ Disadvantages
ÿ not robust w.r.t. evolution
ÿ not scalable
ÿ not intention revealing

Extensional Views

6August 2003 © PROG, VUB

Intentional Views

7August 2003 © PROG, VUB

Complicates use of Intentional Views

ÿ Defined by means of an intentional description
ÿ executable expression in a programming language
ÿ view’s content is computed from the source code

ÿ Advantages
ÿ robust w.r.t. evolution
ÿ scalable
ÿ intention revealing

ÿ Disadvantages
ÿ hard to define (requires meta-programming skills)
ÿ risk to be overly general
ÿ requires detailed knowledge of the application’s internal structure

Intentional Views

8August 2003 © PROG, VUB

ÿ Combines advantages of extensional and intentional views
ÿ ease of use of extensional views
ÿ robustness and scalability of intentional views

ÿ Inducing views
ÿ manually classify source code artifacts
ÿ automatically derive intention behind it

ÿ Techniques
ÿ Logic Metaprogramming

ÿ to connect views to implementation
ÿ Inductive Logic Programming (Machine Learning)

ÿ to derive intention automatically

Induced Intentional Views

9August 2003 © PROG, VUB

ÿ Using a logic programming language (Prolog) at the meta
level to reason about and manipulate programs at the base
level (in Smalltalk)

ÿ Allows to define intentional views in a concise and
declarative manner

ÿ SOUL
ÿ Interpreter integrated in VW
ÿ Contains extensive library of logic predicates that consult source

code

Logic Meta Programming (LMP)

10August 2003 © PROG, VUB

ÿ Machine learning technique
ÿ Discovers a general pattern underlying a number of examples
ÿ Requires a set of examples and a background theory

Inductive Logic Programming

grandFather(tom,bob).
grandFather(tom,jim).
grandFather(tom,ellen).
grandFather(tom,bart).

father(tom,peter).
father(tom,marie).
father(peter,bob).
father(peter,jim).
mother(marie,ellen).
mother(marie,bart).

grandFather(?grandfather,?person) if
 father(?grandfather,?father),
 father(?father,?person).
grandFather(?grandfather,?person) if
 father(?grandfather,?mother),
 mother(?mother,?person).

Examples Background
Theory

Induced Logic Rules

11August 2003 © PROG, VUB

Software Views with LMP

ÿ Extensional
ÿ Logic facts (enumeration)
ÿ

ÿ

ÿ

ÿ Intentional
ÿ Logic rules (program)

class(ScExpression).
class(ScConsExpression).
methodInClass(analyse,ScConsExpression).
...

class(?method) if
 methodInClass(analyse,?method).
...

Induction algorithm

12August 2003 © PROG, VUB

Proof of concept experiment

ScExpression

newClosure
analyse

ScCons
Expression

newClosure
analyse

ScSequence
Expression

newClosure
analyse

SpecialForm
Handler

newClosure
handle:

IfHandler

newClosure
handle:

DefineHandler

newClosure
handle:

13August 2003 © PROG, VUB

Classified Items

analyser(classImplementsMethodNamed(ScExpression,analyse)).
analyser(classImplementsMethodNamed(ScConsExpression,analyse)).
analyser(classImplementsMethodNamed(ScSequenceExpression,analyse)).
...
analyser(classImplementsMethodNamed(SpecialFormHandler,handle:)).
analyser(classImplementsMethodNamed(DefineHandler,handle:)).
analyser(classImplementsMethodNamed(IfHandler,handle:)).

14August 2003 © PROG, VUB

Derived Rules

intention(analyser,<?class,?selector>) if
 analyser(classImplementsMethodNamed(?class,?selector)).

analyser(classImplementsMethodNamed(?class, handle:)) if
 methodSendsMessage(?class, handle:, newConverterFor:),
 methodSendsMessage(?class, handle:, newClosure),
 methodSendsMessage(?class, handle:, analyse),
 classInHierarchyOf(?class,Scheme.SpecialFormHandler),
 classInHierarchyOf(?class,Scheme.SpecialFormHandlerWithSuccessor),
 classInHierarchyOf(?class, ?class).

Redundant

defines intention
in terms of
derived rules

15August 2003 © PROG, VUB

Derived Rules

analyser(classImplementsMethodNamed(?class, analyse)) if
 methodSendsMessage(?class, analyse, newClosure),
 classInHierarchyOf(?class,Scheme.ScExpression),
 classInHierarchyOf(?class, ?class).

analyser(classImplementsMethodNamed(Scheme.DefineRelHandler,handle:)).
Redundant

16August 2003 © PROG, VUB

ÿ Results show that intentions are discovered
ÿ Problems encountered
ÿ algorithm is sensitive to order of examples presented
ÿ sufficient number of examples is needed

ÿ rules are either too restrictive or too general
ÿ performance issues

ÿ Scalability
ÿ only two small experiments, no large-scale study yet

Discussion

17August 2003 © PROG, VUB

Prototype Tool Support

18August 2003 © PROG, VUB

ÿ Induced intentional views combine advantages of
extensional and intentional views, while removing their
respective disadvantages

ÿ Can be used to tackle software documentation problems
ÿ explicit link between source code and documentation by means of

LMP
ÿ robust w.r.t. evolution

ÿ Can be integrated easily into already existing development
tools

Conclusion

