
Roel Wuyts - Stéphane Ducasse
University of Bern, Switzerland

Unanticipated 
Integration of 

Development Tools using 
the Classification Model



Integrating Development Tools

Unanticipated Tool Integration

Classification Model

Small Example

Discussion

Conclusion

Contents



Easy, right?

command-line tools, Macromedia, MMC, ...

But...

Anticipated Integration!

How to integrate tools that are NOT meant 
to be integrated?

Unanticipated Integration.

Integrating Tools



Hard because:

GUI issues.

Conceptual models differ.

Hard to extend for new ‘items’.

Result: Users do the integration manually

Export/Import files, Copy/Paste.

...

Unanticipated?



Use output of one tool as input for another.

Classification Model:

lightweight grouping model of ‘items’.

manipulation of items by ‘services’.

services registration mechanism.

Implementation

Visitor

Solution



Customizing the model

adding extra services.

support for custom items.

Allows for unanticipated integration.

impose integration architecture...

“... from the outside”.

original tools do not need to be changed

Integration



Adding new Services

Service

doObject:
doExtensionalClassification:
doIntentionalClassification:

ChildrenService

doObject:
doExtensionalClassification:
doIntentionalClassification:

IconService

doObject:
doExtensionalClassification:
doIntentionalClassification:
iconFor:

IconSupport

Classifications

doObject: anObject
^self iconFor: #objectItem

doExtensionalClassification: aClassification
^self iconFor: #extentionalClassification

doIntentionalClassification: aClassification
^self iconFor: #intentionalClassification

iconFor: name
^ListIconLibrary visualFor: name



Supporting Items

Service

doObject:
doExtensionalClassification:
doIntentionalClassification:

ChildrenService

doObject:
doExtensionalClassification:
doIntentionalClassification:

IconService

doObject:
doExtensionalClassification:
doIntentionalClassification:

MethodDefinition

 

IconSupport

Classifications

Smalltalk
doMethod:

doMethod:

MethodSupport
acceptService:

doMethod: aMethod
^self iconFor: #methodItem

acceptService: aService
^aService doMethod: self

doMethod: aMethod
^self doObject: aMethod



Integrate SmallBrother & Advance.

‘UML diagrams’ of ‘recently used classes’.

How?

AdvanceEditor service.

Support Methodhistory item

Result: UML diagrams for all kinds of things

Example



Squeak Port

Small basis by me

Finished, extended by Ned Konz

Class extensions are the key!

Allow packaging of extensions

Without this: no visitor!

Without Visitor: complicated model.

Discussion



Unanticipated Tool Integration.

Classification Model

separates items and actions on items

Integrate tools by:

customizing the classification model

“from the outside”

Conclusion



Main client: StarBrowser

Uses Classifications Model throughout.

Currently integrates around 10 tool(sets).

http://www.iam.unibe.ch/~wuyts/StarBrowser/

(a new URL at the ULB in the coming weeks...)

Last but not least...




