Presented at Smalltalk Solutions 2002

XMP =i eXtremeM etaProgrammers

Solving the XP Legacy
Problem with (Extreme)

Meta-Programming
Author(s): Nial Ross and Andrew McQuiggin
Date: 20 April 2002
Reference: XMP/meta-test/pres/0005/1.0
[
Table of Contents
Publication history ii
About thisdocument %
Intended aUdiENCE ot \Y
CONVENTIONS USEd . . .ottt e et e e e \Y
ACKNOWIEAGEMENESo Vi
REEIENCES . .o Vi
Slides 1
Notes 16
11 OUr APPIOaCN . . e 16
111 Tiledide ..o 16
112 VIV IV . ottt e e e e e 16
113 Meta-Programming i e 16
114 TheXPLegacy Problem e e 17
115 GettingaHandleonLegacy ...t e 17
116 Our Approach: Fundamentals o e e e 18
117 Obtaining TeStSto COMPAre oottt e et e et et et 18
118 Test Browser Framework 19
119 Testresultsinthe Test Browser o e 20
12 Meta-Programming Frameworks i 20
121 Base Deegp Comparison Framework e 21
122 Customisable Deep Comparison Frameworkiiiiinne..y 21
123 Tools (that helped usmeta-program)ttt 22
13 DM . . 23
14 Discussion: Valueof thiSWork e 23
141 FULUrE DIFeCLIONSottt e e e e e e e e e e e 23
15 Other Remarks (no dlidesforthese) i 23
151 Using Deep Comparison to Refine our definition of ‘Behaviour’ 24
152 Other Uses of the Test Browserot e e 24
153 Comparison Framework Optimisationi it 24
154 ‘Moveto Component’ Refactoring i e 24
16 SSUBS . . 24
17 Platf OrmMS . . e 25

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
ii Table of contents

Solving the XP Legacy Problem with (Extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

Publication history

September 2002
Issue 1.1. Minor edit of Notes chapter to correct errors and improve

phrasing

April 20th 2002
Issue 1.0. Version presented at Smalltalk Solutions on April 23rd 2002.

April 2002
Issue 0.1. Version provided for inclusion in conference CD.

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
iv Publication history

Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

About this document

Key to XP isthat test-driven devel opment also supports refactoring; tests
reveal when arefactoring breaks the system. When XP isintroduced to a
large existing system, writing tests for the legacy is a sysiphesean task
which lacks the synergy of writing tests in test-driven devel opment.
Without them, however, refactoring is constrained to stay within the area
of new XP development or else be unsafe.

We (Nial Ross of eXtremeM etaProgrammers and Andrew McQuiggin of
HECM) used meta-programming to help introduce XP into alarge
financial system. We subclassed the standard SUnit framework and
browser to support deep comparison of data captured by testsrun in pre-
and post-refactor images. By combining these techniques with afeasibly
small set of basic application-specific tests, we aim to achieve atest set for
thelegacy that issufficient to makerefactoring safe. Thistalk describesour
approach, our experience with it to date, and indicates the kind of systems
to which these techniques are appropriate.

Intended audience
Smalltalkers who want to introduce XP into legacy systems.

Smalltalkers with an interest in meta-programming.

Conventions used
Meta-data: data describing domain classes and behavioursthat, in a

conventional system, would be embodied as hard-coded classes and
methods; not to be confused with meta-programming
Meta-programming: in this talk, meta-programming means use of the
Smalltalk meta-protocol to write methods that walk and manipulate
arbitrary object graphs; the term also has other |egitimate meanings
XP: eXtreme Programming

VA: VisualAge Smalltalk

VW: VisualWorks Smalltal k

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
vi About this document
Acknowledgements
Our work benefited from examining utilities produced by Paul Baumann

and John Brant.

References

[1] Custom Deep Copies, Paul Baumann, The Smalltalk Report 75 March/April 1998
(copy of article plus utility in Smalltalk archive)

[2] The Business Case for Adeguate Reflection, Niall Ross, 8th European Smalltalk
Summer School, Ghent, 30th August - 3rd September 1999 (navigate from
http://www.esug.org/)

[3] XP-rience: eXtreme Programming Experience, Niall Ross, Camp Smalltalk 3 and

10th European Smalltalk Summer School, Essen, 25th August - 1st September
2001 (navigate from http://scgwiki.iam.unibe.ch:8080/SmalltalkWiki/117)

Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

- XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

4 A

Solving the XP Legacy Problem with
(eXtreme) Meta-Programming

Niall Ross, eXtremeM etaProgrammers

Andrew M cQuiggin, HECM

nfr @bigwig.net amcquiggin@yahoo.com

These are the slides of the talk presented at Smalltalk Solutions 2002. An earlier rough draft version was included on the CD distributed

at the conference. This later, much more developed version, with detailed notes in the following chapter, is on the conference website.
Slide No: 1 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/ Overview

 Motivesfor thiswork and for thistalk
— Meta-Programming: a Smalltalk enabler?
— XP Legacy: the problem
e Our Approach
* Implementation
— Obtaining Teststo Compare
— Test Browser Framework
— Deep Comparison Framework
» Discussion: Value of thisWork
— SUnit extention ?
— Sandard Meta-Programming frameworks ?

_

/

Slide No: 2 — 20 April 2002
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers

XMP/meta-test/pres/0005/1.0
Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/ Meta-Programming \

Meta-program verb ..., use meta-obj ect protocol to walk and manipulate object graphs, ...
Secondary Subject of this Talk

Pure programs manipulate data. Pure meta-programs manipulate program structure as
data. Pure programs are slow to change. Pure meta-programs are slow to deliver.

e program: code that should be meta-programmed onceisreplicated as patterns.
e quick meta-program: but 10% wrong (i.e. needing program overrides).
o Correct meta-program: too late (must solve specifically many timesto build generic).
Good OO systems grow by refactoring state downwar ds and behaviour upwards
* Dbehaviour upward: moving behaviour to meta-program is natural extention
« statedownward: state includes program behaviour overrides of meta-program
Smalltalk is exceptionally well-suited to
e writing mixed program and meta-program systems
* incrementally refactoring behaviour between program and meta-program
\M eta-programming patterns and framewor ks should be a Smalltalk enabler. This talk/

refersto one practical use. Who elseisworking on this? Can we make it happen?

Slide No: 3— 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

XMP Smalltalk Solutions 2002

FE oxtreme Meta-Programmers
/ The XP Legacy Problem \

Refactor verb collog. to improve (a program)
Refactor verb to change implementation without changing (desired) behaviour.

Extreme programming relies on a

o Test-driven development: writing testsfirst coding
« Refactoring: tests => change was a behaviour-preserving refactor
Legacy this synergy:

 No XP test suite => no saferefactoring

 Hardtowrite post-hoc testsfor your old code, harder for others old code
— tedious labour with no test-driven synergy
— hard to sell management (and self) on task’s value
— hard to find the assertions, much harder to trust you’ ve found enough

But much of Smalltalk’s survival through the lean yearswas dueto legacy; systemsthat
‘will berewritten in Javain the next two years but weren’t because they couldn’t. Now
\these programs need refactoring and want to use XP. /

Slide No: 4 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/ Getting a Handle on Legacy \

Our system (and other Smalltalk legacy systems ?) has certain features.
e It hasbeen tested
— standard water fall-style distinct test phase, test spec documents, etc.
— non-XP: each refactor invalidates whole effort-heavy test phase
* Only asubset of behaviour changes per 3-month release
— hundreds of products, many options, many permissions
o Complex hehaviour passesthough small(er) ‘narrow’ subsystems
— Sates: rich specific detail within small generic state model
— Business L ogic Validation: complex errors/warningsraised by small protocol
— View layer: many formsbuilt from finite set of widgets
— Pergistence layer: complex productsrealized from compact datain DB

Ul Business Persistent
\ | +-—> Logic > Sore /

Slide No: 5— 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

. XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/ Our Approach: Fundamentals \

Refactor verb to change implementation without changing (desired) behaviour.
Behaviour noun ..., (in OO) a network of objects existing at the end of an operation, ...

 Thetested behaviour of the latest release is acceptable
« All the supported products go through same basic states
create, update, validate, save, ...
« Each state expresses some key behaviour in narrow subsystem(s)
— Validation, Ul, DB interface
e same object network within narrow subsystem => same behaviour from user’sview

sel f assert:
(rel easeTest narrowRoot deepConpareTo: refactorTest narrowRoot)

\ (Of course, it’snot quitethat smple:-) /

Slide No: 6 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/ Obtaining Tests to Compare \

 Writesomebasic test classes and methods
Generi cProduct Scenari oTC t est ChosenNar r owSubsyst entt ¢

Createtest instancesfor each specific product type from stored data

lt est Suite addTests:
persi stent ProductData collect: [...
Generi cProduct Scenari oTC keyl nstVar: ... product Standi ngbata . ..

« Test moves product to scenario’s basic state by
— reusing stored product instance data (synergy with other tests)
— using ‘exampleinstances’ . generated class/widget-specific example data

Assertions check that the scenario’s stateisreached. (Other assertions added as you
know how and havetime; degp comparison ismain assertion.)

« Basictest degpCopiesappropriate graph from chosen narrow subsystem root, e.g.
— Business L ogic Validation system root
— Product’stop-level view

\ 1. Thiscodeisvastly smplified to give an overview; later code examples are also somewhat simplified /

Slide No: 7 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

TestBrowser Framework \

‘QE eX treme Meta-Programmers
Subclasses the SUnit and SUnitBrowser frameworks:
« ComparisonTestResult hasa ComparisonTestCase
— both haveinstvars: ‘earlier Result later Result’ holding superclass instances
 Test Browser ispackagable (coy. processrequired be ableto test in packaged images)
« Test Browser holds multiple TestResults; oneiscurrent TestResult
— createtest result, run selected testsin start (e.g. released) state
— testsin Browser’ssuite copied (with key values), run, added to current Result
— rerunning overwrites previouscopiesin current result
— get new result, effect refactor, rerun (all or some) previoudy-run tests
— new copiesrun and added to new current result
— create comparison result for these two results
— invoking ‘run’ on atest now runsacomparison test on itstwo run copies
— get moreresults, do morerefactors
\ — re-run tests, compare with released, with last, ...

/

Slide No: 8 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

Test Results in the Test Browser \

‘Run’ when TestResult being viewed: run selected test, show outcome (i.e. as usual)
. . test completed and satisfied all its assertions

. . test completed but did not satisfy all its assertions

o Error: test did not complete

‘Run’ when ComparisonTestResult being viewed: run comparison test on tests keyed by
selected test in earlier Result and later Result

. . both tests had same outcome and satisfied the comparison test assertions (i.e.
deep comparison of object graphs captured by the two tests)

. . both tests had the same outcome but did not satisfy comparison test assertions

o Error: testsdid not even have same outcome (comparison test assertions not executed
in this case asthey could be met only by misleading accident)

Comparisonscan beinter-image

— Browser supports dumping and loading of TestResults + contents
or intra-image
\ — deep copying object graphs on capture avoidstrivial comparisons /

Slide No: 9 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/ Base Deep Comparison Framework \

(Wefound few examples!, none for deep comparison; are we not looking hard enough?)

Key issuesin building meta-programming comparison framework

« collection comparison: backtracking for unordered and sorted comparison
« very flexible comparison customisation

Basic Framework: Strategy class and Object methods

(bj ect >>conpar eStruct ureTo: anQbj ect
Nself class == an(Cbj ect cl ass

(bj ect >>conpar eCont ent sTo: anQbj ect using: conpari sonStrat egy
A((conparisonStrategy conparabl el nstVarlndices: self) all Satisfy:
[:instVarlndex | conparisonStrategy
conpare: (self instVarAt: instVarlndex)
to: (anCbject instVarAt: instVarlndex ifAbsent: [nil])])...

Conpari sonStrat egy>>conpare: first to: second
. self hasAl readyConpared: first to: second)or:...
conpareStructureBl ock value: first value: second)
and: [visited at: first put: second.

conpar eCont ent sBl ock val ue: first val ue: second]
\ 1. Paul Baumann's CustomDeepCopy in ST Archive, ReferenceFinder in RB /
Slide No: 10 — 20 April 2002 XMP/meta-test/pres/0005/1.0

Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/Customlsable Deep Comparison Framework\

Two routesto customisation
* (per compared class) Override comparison methods; donein layers
— Vendor (VA, VW so far): vendor-specific classes, singletons, etc
— General: default comparison choicesfor collections, immediates, truncation, etc
— System: default test comparison choicesfor system under test
* (per comparison) Customise strategy before (re-)using
— Choose methods via blocks: structure, content and nil-equivalent blocks
— Class-oriented, via strategy’sfiltering of object’sinstVars

aConpari sonStr at egy
| gnore: Businesshdel atAll: #(#identifier #event Dependents);
| gnore: Proposal Summar yModel at: #savedToDat abase;
I gnore: ValidationCache at: #validationBl ock;
conpareRoot: first to: second

— Instance-oriented, via pre-populating strategy’s visited dictionary
aCopyStrategy ignore: view hol der.

aCopyRepl aceStrategy at: view nodel client use: self testdient.
aConpari sonStrategy nextDi fference.
Slide No: 11 — 20 April 2002 XMP/meta-test/pres/0005/1.0

Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

XMP Smalltalk Solutions 2002

EE eXtreme Meta-Programmers

/ Tools (that helped us meta-program™) \

Dynamic type recovery tools speed customising comparison strategy and methods

« Weused SmallTyper (VA)

« TheAnalysis Browsar workssimilarly (VW)

 Doother dialectshave such tools ?

Serialization for inter-image test result comparison

« Weused standard VAST dumper / loader
— needed same customisations as our strategies but used different protocol
— implemented with primitives so hard to debug (that’swhy | wrote ConstrainedRF)
|sthere an easy way to debug? How do other dialects dumpers compare?

Tools wanted

« Make Refactoring Browser meta-program-protocol aware? (We may explorethis.)
— safer: e.g. warn or rewrite strategy ovverides affected by ‘renameinstVar’
— eader: refactor per strategy overrideto per classoverride (a common action)

\ 1. We also used the RB (massively), MethodWrappers, Greg Hutchinson’s code quality tools, etc., etc. /

Slide No: 12 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

- XMP Smalltalk Solutions 2002

Demo | \
L aunch browser, demo featurest.

‘Q_E eXtreme Meta-Programmers
» J|oad test result, renameit and rerun three selected tests
o dotrivial refactor and create new test result, rerun selected tests
e createcomparison result for two results, rerun to show amber and red results
— Show the difference found by amber comparison using an inspector

— (if timeallows, let ConstrainedReferenceFinder detect amber-comparing tests
non-comparing values from tests' roots, then show pathsto it areidentical)

« fixrefactor, rerun amber-comparing test in refactor result, then comparison result

— formerly-failing comparison test now passes

Mention other uses of comparison test framework:

e user permissions: verify more permissions give more, not different, behaviour

e packaging: run testsin development image, export result to package, rerun, compare
» external changes: compareresults of tests capturing interface subgraphs before/after/

\ 1. No database access from Cincinnati so only new product creation scenarios testable

Slide No: 13 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

= XMP Smalltalk Solutions 2002
EE eXtreme Meta-Programmers

Demo |l

Viewing the Comparison Result at the end of the demo.

i Flas Tast Browsar - Initialized Product Tests - compara Rafactored to Released by Validation

Ble Browse Test | Fesgt Configuestion Help

Exit
I o e Resul Oncomplete)- |
Method Discard This Rasult (View hext) Correct] Fallures| Errors] Mot To
& Hew F‘I:llll:y Discard ,!." Rasulis MI‘# H.ﬁﬂ |:| 1 n ﬂ 1
@ Add Benefil 1 Released L 0 [l 1 LI 1

2 Refactorad
@ Add Benefil *_2 fompare Rafactored 1o Ralessed by Validetion [,

® New Policy - Internal Transfer for Test 4: NewProposal-Create -»

@ Add Benefits - Internal Transfer for Test: 42 NewProposal-Create -»

Hew Policy - People aged under 18 for Test: 4: NewProposal-Creale -

2 Add Benefits - People aged under 18 for Test: 4 MewProposal-Create -»
@ Individual Pansions

Personal Pensions

@ Income Drawssdown

Temporary Assurances

@ Permanent Assurances

ol s i w pn | Bpes prn i lewimoan § o

E = === -----N--
EFI= ===
= -
g e Pl Pl ok e e et e et
B Pl e Pl M e — — = = =

ssed, 1 failurels). 1 errorfs] out of 46 test]s)

Slide No: 14 — 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

_____ XMP Smalltalk Solutions 2002
EE eXtreme Meta-Programmers

For eXtreme Programming ?

o Test Browser could be made public domain
— e.g. as SUnit(Browser) add-on at Camp Smalltalk
« KeyinstVarsfor TestCases
— arose naturally from system’s use of data to define products
— comparison tests catch key mismatches
— Isthissafe? Isthisin accord with SUnit philosophy?

For Meta-Programming ?

 Meta-Programming framework(s) can be more powerful and more standard
— e.g., | subclassed RB’s ReferenceFinder to ConstrainedReferenceFinder, using

Would a common protocol or common framework be used?

_

/ Discussion: Value of this Work \

same protocol and implementation as my strategy for the extra features; easy !!!

‘Smalltalk Best Practice Meta-Patterns: Can | buy it? Must | writeit (any co-authors)?

/

Slide No: 15— 20 April 2002 XMP/meta-test/pres/0005/1.0
Niall Ross, Andrew McQuiggin eXtreme Meta-Programmers Solving XP Legacy with (Extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

16

Presentation 1 Slide Notes:
Solving the XP Legacy Problem with
(Extreme) Meta-Programming

1.1

111

1.1.2

1.1.3

Thetext in sections 1.1 through 1.4 constitutes notes to the slides. Each
subsection heading isthe title of the corresponding slide.

Our Approach

Key to XPisthat test-driven development al so supportsrefactoring; testsreveal
when arefactoring breaks the system. When XPisintroduced to alarge existing
system, writing testsfor thelegacy isasysiphesean task which lacksthe synergy
of writing testsin test-driven development. Without them, however, refactoring
IS constrained to stay within the area of new XP development or el se be unsafe.

Title slide

For all I know, thereisasolution to the XP legacy problem already in the public
domain. But one thing I’ ve learned from the web is that they can write the stuff
faster than | canread it. Today | will present the solution that Andrew and | have
pursued in hopesto learn more.

Overview

Thistalk begins by explaining our motivesfor thiswork and for thistalk, which
aretwo-fold: an interest in meta-programming and a need to use XP on legacy.
Next | describe our approach in outlineand thenin detail. After ademo, we shall
discuss the possible value of thiswork to XP and/or meta-programming.

Meta-Programming

| have experience of several kinds of meta-programming. The meaning we
needed for the work 1’ m about to describe is simply, ‘using Smalltalk’s meta-
object protocol to walk and manipulate arbitrary object networks built from
classes unknown in advance.’

| have a secondary aim in presenting this fairly trivial example of meta-
programming. I’ ve often thought that meta-programming frameworks should be
more commonly used in production code, and more publicly known, than I’ve
found them. (Of course, it might be that they are and I’ m just not looking in the
right places.)

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

17 Solving the XP Legacy Problem with (Extreme) Meta-Programming

1.14

1.15

Pure meta-programming solutions to commercial problems are hard. A
completely correct meta-algorithm can only be developed slowly from several
well-understood exampl es, the exact opposite of the usual commercia scenario
where awindow of opportunity for anew imperfectly-understood problem must
be hit acceptably. Worse, if a complex meta-algorithm supports the current
portfolio, one dare not hack a change into it on a short timescale. Quickly-
refactored meta-algorithms are typically 90% right and a very-hard-to-
understand-and-fix 10% wrong. But this 10% is usually easy to handle
acceptably at the programming level, thus a seamless mixed program-and-meta-
program framework is commercially viable. Asimportantly, such aframework
allowsfor the piecemeal refactoring of behaviour to ameta-behaviour on longer
timescales.

Thisisthe application to meta-programming of a general truth about OO
systems. Ralph Johnson has pointed out that aliving OO system evolvesto
refactor state downwards (asthe system becomes ableto handle more situations)
while refactoring behaviour upwards (as specific behaviours are recognised as
examples of more general patterns). Refactoring behaviour into meta-behaviour
isanatural extension of thisrule.

Why am | delaying the start of the main talk with these reflections? Well,
because | think Smalltalk is particularly well suited to building frameworks in
which refactoring between the program and meta-program layers can be donein
small increments, as XP demands. | shall return to this at the end of the talk.

The XP Legacy Problem

XP needsrefactoring. Refactoring needs a means of showing that achangeis(or
is not) behaviour-preserving. The refactoring browser has a strong means:
provableformal equivalence. XP usesaweaker one; if my testsdon’t break then
the behaviour | care about has been preserved. Key to XP'sviability isthat test-
driven development also supports refactoring; the tests that drive development
of afeature go on revealing when arefactoring breaks that feature.

When XP isintroduced to alarge existing system, this synergy islost. Writing
testsfor the legacy is a serious and demotivating problem. The original coders
are often long gone, leaving the would-be X Per to try and work out what the
devel opment tests should have been. Without such tests, however, refactoring is
constrained to stay within the area of new XP-style development or else be
unsafe.

Thiswould be a problem in any context but | think it's especially important for
Smalltalk. In the lean years of Java-hype, alot of Smalltalkers survived in
legacy systems; systems that management decreed were to be replaced but
whichwerejust too complex to rewritein amore fashionable but less productive
language and too vital to discard. These systems need XP.

Getting a Handle on Legacy

In trying to solve this problem for our system, Andrew and | decided to exploit
certain features it had, features we suspect it shares with other such survivors.
Firstly, it was of course tested - in good old-fashioned waterfall style by
integration testers at the back-end of the development process. Thus we could
alwaysfeel reasonably sure that the behaviour exhibited by the previousrelease

Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 18

1.16

1.1.7

was acceptable. What we couldn’t do was have the integration testersrerun their
effort-intensive process every time we changed aline of code in the upcoming
development stream.

A second feature was that afairly small subset of the total behaviour was
deliberately changed in each 3-month release; a majority of our hundreds of
supported products did not have changes requested against a given release.
Unfortunately, the integration testers still had to retest all of it, lest we had
accidentally altered something.

Thethird feature wasthat, considered very abstractly, the system’sfunction was
to enforce complex business |ogic between multiple users’ editing and viewing
of product data on the one hand, and the database’ acceptance of valid data on
the other. Thus products went through a sequence of generally comparable
states at which the system’s statusin regard to them was adequately capturedin
smaller subsystems, such as

» theactua values held in the Ul widgets
» theactua model objects saved to the database
» thebusinesslogic validation objects raised

These items were not meaningful as individual objects but they did provide
pointers into object graphs which adequately expressed the outcome of
operations. We saw them as narrow channels through which the system’s
behaviour momentarily flowed, conveniently built from afinite set of widgets
and relationships. (Commercia Ul builders usually have avery finite set of
widgets and relationships, and while the validation and database models were
our own utilities, they shared this feature.)

Our Approach: Fundamentals

Putting all thistogether, Andrew and | decided to try out an additional definition
for what an XP refactoring could be. L et the behaviour whose change we want
to detect be represented by the network of objectsit createsfrom aroot in some
appropriate subsystem (the Ul, the validation logic, whatever). Create basic
teststhat capture these networks after exercising agiven product to agiven state.
Use appropriately-truncated deep comparison to verify whether tests run before
and after arefactor captured the same networks. Simple.

Of course, there were afew small details to sort out. :-)

Obtaining Tests to Compare
The work to implement thisfell into three parts:

e creating a suite of basic tests

e creating atest browser framework to run them and their deep comparisons
» creating the deep comparison framework

The first of these was the most straightforward. We defined basic tests to

exercise ascenario (i.e. move reused or newly-created product to given state)
and capture a given network graph.

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

19 Solving the XP Legacy Problem with (Extreme) Meta-Programming

1.1.8

Product type data and product rules are stored in what our system calls standing
data, populating a smaller number of templates, themselves pluggable. (Thisis
an example of another meaning sometimes given to meta-programming but |
call it meta-data, not meta-programming, myself.) Thusit was most natural for
us to create tests for each product by giving the basic test classes key instVars,
(and the behaviour of copying these when their instances were rerun or
debugged; a behaviour not in the SUnitBrowser which has no concept of tests
having key instVars). We could then create tests for all products by creating
instances of our chosen generic test populated from our meta-data. We found
this a flexible and cost effective method but arguably it is a departure from the
origina SUnit philosophy, a point 1’1l discuss later.

L ots of reusable product instance data existed in the database along with generic
methods to display it. This data we could reuse, in the form of entire reused
products, or asvaluesto populate new clients and products by deep copy-replace
at the model or view layer. We also instrumented each model classto offer
example instances that partitioned its type, letting us create new products and
jitter existing products. Note that these new products did not haveto bevalidin
terms of business logic; testing whether arefactor changed the handling of
invalid product submissionsis at least as valuable.

Theonly essential basic test assertions are those that check the chosen state was
reached before network graph capture. We added such others as we knew were
valid and had time for. (Arguably, as time passes, much that is now checked by
deep comparison may be refactored to specific assertions in product tests as
debugging test failures teaches devel opers what the legacy needs.) These
assertions run, the test then captures an appropriatel y-deep copy of its narrow
subsystem root’s graph. For example, validation logic (most used to date) also
copies any model layer objects that have errors. View layer roots capture
editable widgets and all that connect them but, except for widget values, ignore
the moddl layer.

Test Browser Framework

The subclassing of the SUnit and SUnitBrowser frameworks to get what we
wanted was reasonably straightforward. The classes in our
ComparisonTestCase sub-hierarchy run various flavours of deep comparison
assertions between the two tests that each comparison test instance holds. Our
test browser (which we made packagable since our release process requires
some packaged use of it, done by loading an altered version of SUnitBrowser’s
superclass) holds multiple instances of TestResult and/or ComparisonResullt,
viewing one at atime. I’ll describe the process verbally and show abrief demo
later in the talk.

* Open the browser on your chosen suite of basic tests.

* Inyour pre-refactor image, run some basic tests to capture abaseline of run
test instances. Copies of the tests you select will be run and added to the
current TestResult (which it is advisable to name appropriately so you can
recognise it later). At this point the browser has few differences from the
standard one; you can run tests you don’t intend to compare, rerun tests, etc.

Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 20

1.19

1.2

» Oncethepre-refactor resultisasfull of testsasyou wish, effect your refactor
(more on that in aminute) and request a new result with an appropriate
name. (For example, if your refactor’s development test were called
testAnnuityCanHaveM ulti pleGrantees then your test results might be called
AnnuityHasSingleGrantee and AnnuityHasM ultipleGrantees, or they might
be called Stream-P17 and Stream-P17a, or by the dates on which they were
started, or whatever best helps you recognise them.) Run the tests you want
to compare again; their run copies will now populate your new result. As
before, you can run other tests as well.

* Reguest acomparison result for the two. Running a selected test now runsa
copy of the ComparisonResult’s comparison test on the two run copies of
the selected test being held in the two results being compared, and puts the
result in the ComparisonResult.

You can continue the process, creating further results and comparing tests run
in your current state with the original tests, with the most recent tests, whatever.

Test results in the Test Browser

When viewing a standard TestResult, results mean what they usually do: the
colour shows which of the three possible outcomes occurred. When viewing a
ComparisonResult:

» Pass(green) meansboth tests had the same outcome (Pass, Fail or Error) and
they satisfied the comparison test’'s deep comparison assertions.

» Fail (amber) means both tests had the same outcome but they did not satisfy
the comparison test’s assertions

» Error (red) means the tests did not have the same outcome (e.g. one passed
and the other errored). The comparison test assertions are not performed in
this case as they could be met only by misleading accident.

| spoke earlier of * effecting therefactoring’ between distinct test result runs. The
browser supportsdumping serialized test resultsto afileand rel oading theminto
compatible browsers in other images. Comparison can also be done within the
sameimage asran theteststhat popul ated the pre-refactoring result: run thetests
and then either make the change, or load a configuration map that hasit. (For
example, | have sometimes maintained a developer and a comparison image,
regularly releasing my current state into my developer map in the developer
image, then (re)loading that map in my comparison image and re-running my
tests.) When comparing intra-image, the deep copy that is effected by serialized
dumping has to be done explicitly, so we routinely set up the teststo do it

anyway.

Meta-Programming Frameworks

We needed deep comparison, deep copy and deep copy-replace for the main
task, with reference tracing for debugging (especially, debugging the dumping
of test results). We found few examples of public domain deep-graph-walking
frameworks and none for deep comparison or copy-replace. I’ d be delighted to
learn that we were not looking hard enough and there are dozens; that’s one of
my motives for giving thistalk. Meanwhile, | benefited from Paul Baumann's
deep copy framework (and article [1]) and from the Refactoring Browser’s
ReferenceFinder . Hence | wrote deep comparison and deep copy-replace
frameworks, and adapted deep copy and reference tracing to our needs.

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

21 Solving the XP Legacy Problem with (Extreme) Meta-Programming

121

1.2.2

Base Deep Comparison Framework

| developed deep comparison test-first in standard X P fashion. Also in standard
if non-ideal fashion, subsequent practical use revealed omissionsin my initial
tests and assertions. The main issues that arose were two.

 firstly, collectionsrequire much subtler handling in deep comparison thanin
deep copy or reference tracing; backtracking and comparison order issues
took plenty of fixing

» secondly, we needed all our deep-walking strategies to be both more
customisable and customisable from more contexts.

The most basic part of the framework is a comparison strategy paired with
methods whereby the objects being compared invoke it. Structural comparison
comes first; are the two objects sufficiently alike to make detailed comparison
safe and sensible? Content comparison, unless overridden in specific classes,
asksthe strategy both what to compare and how to compare. A third method (not
on slide) truncates comparison.

The comparison strategy’s own most basic job is shown in the (simplified) code
snippet; to keep adictionary of what has been or is being matched to what, and
to use that when the same node in the graph is encountered again.

Customisable Deep Comparison Framework
There are two ways to customise comparison.

* Thefirst way isby overriding the basic methods that objectsinvokein more
specialized classes and in a hierarchy of layers. (Each layer calls the one
below in class Object if it does not encounter an override.)

— Lowest above the Basic Layer isthe Vendor Layer, where vendor-
specific classes, singletons and other special valuesare handled, etc. (So
far we have layersfor VW and VA.)

— Thisiscalled by the General Layer, where default choicesfor collection
order comparison, immediate-to-non-immediate comparison and
acceptable equivalents to nil are set.

— Abovethese, whatever layers a specific application may require call the
general layer (or alower application layer). We' ve written two distinct
application layers for our system to date, one for the legacy testing I'm
describing and one to support testing changes to our database and its
access protocols. Deep comparison was a particularly convenient way to
test the latter since by definition all object graphs produced by all
operations on the Smalltalk side were required to be exactly the same
under these changes.

» The above applies to every comparison. Both while devel oping the right
comparisons for the system layer to use in general and when a given
comparison appliesto only one or afew tests, we needed means of
customising that applies per comparison call. | provided three waysof doing
this.

— Firstly, blocks set on strategy instance creation couple the structure,
content and truncation methods to the strategy. Thus the caller can

Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 22

123

choose which layer to use and wrap the calls with local handling or
aternatesif they desire.

— Secondly, a strategy can be set to ignore given instVars. The relevant
indices are recomputed on each root call so changes to class shapes and
subclasses hierarchies are either handled or (if they affect the instVar
names) caught.

— Thirdly, astrategy can be set to ignore instances or handle themin
particular waysby pre-populating itsdictionary. It can also be reused; its
dictionary can be manipulated, e.g. to ignore a difference found, and
then the comparison rerun.

Tools (that helped us meta-program)

We found dynamic type recovery a useful way to get afirst cut on what classes
to override in the system layer. In VA, we found Small Typer a very useful tool
for this (once we realized that some combinations of partial type recovery were
incompatible, afact the manual forgot to mention; we now routinely recover all
typesfor any chosen class). We would instrument our system classes of interest,
run some tests, examine the generalized types of their instvars and so get afirst
approximation to which classes might benefit from system-layer comparison
overrides. (In VW, the equivalent tool isthe Analysis Browser. I’ m interested
in knowing whether other dialects have similar tools.)

Another utility we used was the dumper/loader. This does graph-walking too, of
course. There were two minor bugbears.

» Firstly, whereasall our strategy classes used the same protocol for overrides,
the dumper uses its own protocol. Almost invariably, every strategy being
used in agiven context wantsto ignore, handle specially or handle generally
thesameinstVarsin the same, or analogous, ways. It wastediousto translate
the code used for al our strategies into the different protocol the dumper
requires. (Sometimes we didn’t bother but used hacks, e.g. shutting down
the product’sview layer while dumping.) | have thought of writing acustom
refactoring for it or else writing wrappers that map my protocols; perhaps |
will get around to one of these sometime.

» Secondly, the VA dumper, being implemented with primitives, was much
harder to debug than ours. Doubtlessit ran faster than if it had not been, but
that was not an issue for our usage. | would have welcomed a non-primitive
setting. Our most frequent use of ConstrainedReferenceFinder was to track
down the causes of dumper errors. If there's some obvious way round this,
I’d be glad to learn it. I’d also be interested to know how other dialects
dumpers compare on these issues.

Something we would have liked, though its absence hasn't bitten us yet, is RB
awareness of our meta-protocol. It would be good, when renaming an instVar,

to beat least warned of strategy customisationsthat refer toit, and better to have
them refactored along with therest. I may look into this. Custom refactoringsto
map between the various ways of customising a comparison would aso be nice.

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002

23 Solving the XP Legacy Problem with (Extreme) Meta-Programming

1.3

1.4

141

1.5

Thesetools specifically hel ped us meta-program. Of coursewe also used the RB
incessantly, plus method wrappers (about which I’d like to talk to anyone who
understands how the VA packager handles CompiledMethods), Greg's quality

control tools (he hasthem invoking Smalllint aswell - werequestedit - and I’ ve
learned not to ignore the * Guard clauses warning), and others.

Demo
Seethe dides.

Discussion: Value of this Work

My main reason for giving thistalk isthat | want to get afeel for the value of
thiswork, if it hasany. Tell meyour opinion now, catch me over dinner or email
me as suits you.

Future Directions

Firstly, what isits value in introducing XP to Smalltalk legacy? | gave my
reasons for thinking the Smalltalk legacy issue important near the start of this
talk. Do people agree? And if so, isthistechnique generaly viable? If thereis
sufficient feeling that it is, there are some things that can be put into the public
domain on various timescales. I’ d be happy to provide a public domain version
of the Test Browser in time for this summer’s Camp Smalltalk to align with the
latest SUnit, port to other dialects or whatever. (And of course, I’d be delighted
to provide consultancy on applying this technique to other systems.)

(A secondary issuein thisis what do people think about key instVars for
TestCases. Isthat alegitimate development of SUnit? If not, what should we do
instead - generate test case code from our standing data? This touches on SUnit
issues that themselves need resolving; whether the test instance itself or a copy
of itisexecuted in run mode and in debug mode differs between basic SUnit and
SUnitBrowser. Resources are also differently handled in the two cases.)

Secondly, what isthe value of thiswork in particular and meta-programmingin
genera to Smalltalk? I’ ve given my reasons for thinking that meta-
programming frameworks, provided they allow easy program-level overriding
and instance-level customisation, should be akey smalltalk enabler. Do people
agree? | feel that meta-programming frameworks have alot in common - quite
enough to makeit worth thinking of common core implementation and protocol.
For example, | found it very straightforward to add my customisation protocol
and implementation to a subclass of the Refactoring Browser’s
ReferenceFinder. So, would anyone use a common framework or protocol ?
Does one already exist? If | sit down to write ‘ Smalltalk Best Practice Meta-
Patterns’, would there be any co-authorsto offer examples of patterns or, better
still, implementations? Has the book already been written; can | buy it instead
of writing it? Questions and comments, please.

Other Remarks (no slides for these)
These are untried ideas that arose while | was doing this work.

Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
Solving the XP Legacy Problem with (Extreme) Meta-Programming 24

151

15.2

153

154

1.6

Using Deep Comparison to Refine our definition of ‘Behaviour’

A variant approach we have not yet tried would be to deepCopy from the narrow
subsystem root before running the test, then after running, run acomparison and
note all the differences within a given depth. Thisinformation could be passed
with the test and the comparison between the two tests run only on these
differencesi.e. on the objects altered by running the test (of course, a compare
general start state test would also be needed). It is possible this would
significantly reduce the amount of comparison customisation needed and/or
focusin on the actual behaviour elicited by the test.

Other Uses of the Test Browser

No rule limits using our test browser to run only deep comparisons. Are there
any other kinds of secondary assertions on single, double or multiple tests that
would be worth running? Could it be developed into atest composition
browser?

Comparison Framework Optimisation

Much Prolog compiler work addresses backtracking optimisation. My
framework is unoptimised at present, my hasty attempts to apply these ideas
crudely to my framework having met errors. Can anyone advise, e.g. how does
SOUL and other Prolog-in-Smalltalk work handle backtracking?

‘Move to Component’ Refactoring

Frequently, especially when developing complex test suites, | found myself
needing to refactor a method from the class where it was defined to a
parameter’s (or instVar’s) class, e.g.

Pr oduct Test Case>>copyCient: aCient

“Code that after successive refactors nowhas little
or nothing to do with Product Test Case”

into

Client>>copy OR dient>>copylnTest: aTestCase

““aCient’ replaced by ‘self’, ‘self’ replaced by
‘aTest Case’, and perhaps any directly-accessed instVars of
aTest Case replaced by accessors”

with the calls being appropriately rewritten. This often happens when utility
methods first defined on the test case are refactored into chunks some of which
belong on the classes being tested. Sometimes, asthe method devel ops, the need
to dispatch on the parameter’s subclass makes it essential to move them there.

The relevant refactoring is ‘Move to Component’ in the RB. | mention thisin
case anyone elseisasslow asl to realise this.

Issues

Our tests have key instVars. I’ ve had to overriding methods in SUnitBrowser
and alter TestCase>>debugUsing: in SUnit to achieve this. | propose that
systems that use meta-data will naturally want to write test classes with key
instVars so that their instances can be populated from that meta-data. Any
agreement or argument?

XMP/meta-test/pres/0005/1.0

Presented at Smalltalk Solutions 2002

Presented at Smalltalk Solutions 2002
25 Solving the XP Legacy Problem with (Extreme) Meta-Programming

1.7 Platforms
Almost all the comparison framework isdialect neutral. A vendor layer for each
dialect is essential but fairly straightforward to write from another dialect’s
example. Layersfor VW and VA exist.

The browser currently runsonly in VA. A straightforward set of widget tweaks
should port it to any dialect that already has SUnitBrowser. Part of any port to a
dialect that used another SUnit Ul would be making the testsin that Ul’stest
suite distinct from the (copied) tests actually run by it.

Solving the XP Legacy Problem with (extreme) Meta-Programming

Presented at Smalltalk Solutions 2002

