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F-Script in the Mac OS X Architecture 

Quartz, OpenGL, multimedia, printing, 
event handling, low-level window 
management, etc. 
Strings, run loops, collections, processes, 
resources, etc.!
Multitasking, virtual memory, SMP, file 
systems, device drivers, networking, 
threading packages, etc.!



Mac OS X is a UNIX operating 
system which is implemented 
(mostly) in C and which offers 
C-based APIs. 
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Apple provides three high-level 
environments (tools, APIs) for 
programmers. 
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The main goal of Carbon 
is to provide toolbox-like 
APIs (i.e. old Mac OS 
APIs) for porting existing 
Mac OS applications, or 
creating new ones.   
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The Java environment supports 
both standards, cross-platform, 
Java frameworks and specific 
Mac OS X Java APIs. In both 
cases, the Java environment 
provides advanced integration 
with the underlying Mac OS X 
layers.  
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Cocoa provides a lightweight 
object-oriented extension of the C 
language, called Objective-C. It 
comes with various frameworks 
and tools.!
Cocoa is strongly influenced by 
Smalltalk although it is based on 
the  compile-link-run model of C.!
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F-Script 

Quartz, OpenGL, multimedia, printing, 
event handling, low-level window 
management, etc. 
Strings, run loops, collections, processes, 
resources, etc.!
Multitasking, virtual memory, SMP, file 
systems, device drivers, networking, 
threading packages, etc.!

F-Script adds an interactive 
object-oriented environment to 
Cocoa. It lets you interactively 
manipulate Cocoa-based 
objects. It also lets you write 
scripts. 
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Lightweight interactive & scripting layer 

•  F-Script does not replace Mac OS X development tools, frameworks 
and object run-time: developers continue to use existing tools & the 
Objective-C language to develop new classes. 

•  F-Script adds a lightweight interactive and scripting layer to the 
Cocoa stack. 

•  Emphasis is on interactive high-level and user-friendly object 
manipulation rather than class development.  
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Lightweight interactive & scripting layer 

  Emphasis is on interactive high-level and user-friendly object 
manipulation rather than class development.  

myObject is now registered in the Mac OS X distributed object 
system, under the public name ‘foo’. Other applications can 
connect to it and use it. 



Lightweight interactive & scripting layer 

  Emphasis is on interactive high-level and user-friendly object 
manipulation rather than class development.  

Block inspector allowing in-place editing of block code. 



Lightweight interactive & scripting layer 

  Emphasis is on interactive high-level and user-friendly object 
manipulation rather than class development.  

User-friendly access to core Mac OS X technologies (here: drawing a blue circle with Quartz).  



High level object manipulation 

  Emphasis is on interactive high-level and user-friendly object 
manipulation rather than class development.  

One of the main weakness of object technology: high-level 
manipulation of data. 



Weakness of object technology 

   
  Years ago relational supporters argued that object-oriented 

databases were a twenty-year step backward.  

  They were right !!! 

  Sure, object technology provides a high-level modeling approach. 
But think about how low-level, object technology is compared to 
relational algebra when it comes to manipulating whole sets of 
data. 

  This is a big challenge!  



Weakness of object technology 

   
  This criticism prompted a major enhancement of object 

technologies: the development of object query languages.  

  This development provided a solution to the lack of high-level 
features found in traditional object languages. 

  So far, results are mixed.   

  Object query languages have not yet made their way into 
mainstream object languages. 

  In their most recent incarnations, object query languages adopt 
quite a low profile. They are merely used as an interface to an 
underlying database, and not as a general means of manipulating 
objects (e.g. JDO Query Language, EJB Query Language, Gemstone 
etc.). “The query is executed in the databse, not in the VM”. 



High-level object manipulation 

   
  We want something with the power of relational algebra built into 

our programming language! 

  Array programming principles (cf. Ken Iverson’s APL) to the rescue. 

Smalltalk extended into an object query language allowing synthetic 
expression of object manipulations. 

  A new message send paradigm. The classic Smalltalk message construct 
becomes a special case of a more general messaging system. 

  A small kernel of high-level operators for object collection manipulation: 
Compression, Reduction, Join, Transposition, etc. (implemented as 
methods). 

  Aim was to minimize extensions needed to include query language level 
capacities in Smalltalk. From a technical point of view, can easily be 
adapted to existing Smalltalk implementations. 



   

“F-Script lets one easily do pretty complex data mining to drill down through samples of 
thousands of galaxies distributed throughout a very large parameter space.”!

Prof. Roberto Abraham - Dept. of Astronomy & Astrophysics - University of Toronto.!



Graphical Environment: shell, object browser, etc. 

F-Script Architecture 

Little Smalltalk Interpreter (+ Array Extensions) 

Object/Array Programming Engine 

Object Model!



F-Script Object Model & Frameworks 

  F-Script is based on Smalltalk syntax and concepts, but instead of 
using Smalltalk’s object model and common Smalltalk frameworks, it 
use the Cocoa object model and frameworks. 

  Thanks to the integration with Cocoa, F-Script gains many advanced 
features, which can be directly accessed by the F-Script user, "for 
free": 

•  Sophisticated GUI framework (Windows, Views, Event Model, Text Layout, etc.), 
•  Unicode support, 
•  Access to the Quartz features (Mac OS X graphic subsystem), 
•  Distributed Objects, 
•  Object Persistence, 
•  Integration with Interface Builder, 
•  Networking, 
•  File System interaction, 
•  UNIX abstractions: tasks, pipes, etc, 
•  Collection classes, 
•  Etc. 



F-Script/Cocoa Object Model Example  

  Derived from the Smalltalk object model. 

  Smalltalk’s keyword syntax. 

  Class and meta-classes are objects.  

  Single inheritance. Support for protocols. 

  Fully dynamic. Static typing optional.  

  Flexible: the notion of “category” lets you add 
methods to classes you have not produced. 
The “poseAsClass:” method lets you replace a 
class by another one a runtime, etc. 

  isKindOfClass:, respondsToSelector:, 
performSelector:, doesNotRecognizeSelector:, 
etc.   



F-Script is embeddable 

  In addition to a stand-alone application, F-Script comes as an 
embeddable Mac OS X framework. 

  This means you can use an F-Script interpreter (or several ones) in 
your own applications. 

  F-Script components are accessed through an Objective-C API.  



F-Script is embeddable 

Developing with Project Builder and the F-Script framework 



Object browser: browsing the workspace 



Object browser asks for arguments 



Browsing classes and meta-classes 



On-Screen selection of widgets  



Customizing the object browser 



The key-value browser (by Joerg Garbers) 



Using Mac OS X frameworks from F-Script  

[:title | |window conversionScript form button line|   
window := NSWindow alloc initWithContentRect:(125<>513 extent:400<>200)  
                   styleMask:NSTitledWindowMask+NSClosableWindowMask+NSMiniaturizableWindowMask+NSResizableWindowMask   
                   backing:NSBackingStoreBuffered  
                   defer:true. 

conversionScript := [(form cellAtIndex:2) setStringValue:(form cellAtIndex:0)  
floatValue * (form cellAtIndex:1) floatValue. form selectTextAtIndex:0]. 

form := (NSForm alloc initWithFrame:(60<>90 extent:320<>85)) autorelease. 
form addEntry:@{'Exchange Rate per $1', 'Dollars to Convert', 'Amount in Other Currency'}. 
form setAutosizesCells:true; setTarget:conversionScript; setAction:#value. 

button := (NSButton alloc initWithFrame:(250<>20 extent:90<>30)) autorelease. 
button setBezelStyle:NSRoundedBezelStyle; setTitle:'Convert'; setKeyEquivalent:'\r'. 
button setTarget:conversionScript; setAction:#value. 

line := (NSBox alloc initWithFrame:(15<>70 extent:370<>2)) autorelease. 

window contentView addSubview:@{form, button, line}.  
window setTitle:title; orderFront:nil. 
] 



Interface Builder and F-Script 



F-Script Anywhere 

  F-Script Anywhere, developed by Nicholas Riley, allows you to inject a 
complete F-Script environment into any running Cocoa application - 
even third-party applications! 



F-Script Anywhere inside Chess 



Download & Resources  

www.fscript.org 

  Binaries for Mac OS X 
  Source code 
  User guide with complete reference documentation 
  Articles published by O’Reilly Network 
  Paper from APL 2000, documenting the high-level extensions 
  Additional tools, including F-Script Anywhere 
  Mailing List 



Thanks ! 
See you at 

ESUG 2003 ! 


