
ESUG 2002 - DOUAI

F-Script: Smalltalk Scripting for Mac OS X

Philippe Mougin

pmougin@acm.org

F-Script in the Mac OS X Architecture

Quartz, OpenGL, multimedia, printing,
event handling, low-level window
management, etc.
Strings, run loops, collections, processes,
resources, etc.!
Multitasking, virtual memory, SMP, file
systems, device drivers, networking,
threading packages, etc.!

Mac OS X is a UNIX operating
system which is implemented
(mostly) in C and which offers
C-based APIs.

F-Script in the Mac OS X Architecture

Quartz, OpenGL, multimedia, printing,
event handling, low-level window
management, etc.
Strings, run loops, collections, processes,
resources, etc.!
Multitasking, virtual memory, SMP, file
systems, device drivers, networking,
threading packages, etc.!

Quartz, OpenGL, multimedia, printing,
event handling, low-level window
management, etc.
Strings, run loops, collections, processes,
resources, etc.!
Multitasking, virtual memory, SMP, file
systems, device drivers, networking,
threading packages, etc.!

Apple provides three high-level
environments (tools, APIs) for
programmers.

F-Script in the Mac OS X Architecture

Quartz, OpenGL, multimedia, printing,
event handling, low-level window
management, etc.
Strings, run loops, collections, processes,
resources, etc.!
Multitasking, virtual memory, SMP, file
systems, device drivers, networking,
threading packages, etc.!

The main goal of Carbon
is to provide toolbox-like
APIs (i.e. old Mac OS
APIs) for porting existing
Mac OS applications, or
creating new ones.

F-Script in the Mac OS X Architecture

Quartz, OpenGL, multimedia, printing,
event handling, low-level window
management, etc.
Strings, run loops, collections, processes,
resources, etc.!
Multitasking, virtual memory, SMP, file
systems, device drivers, networking,
threading packages, etc.!

The Java environment supports
both standards, cross-platform,
Java frameworks and specific
Mac OS X Java APIs. In both
cases, the Java environment
provides advanced integration
with the underlying Mac OS X
layers.

F-Script in the Mac OS X Architecture

Quartz, OpenGL, multimedia, printing,
event handling, low-level window
management, etc.
Strings, run loops, collections, processes,
resources, etc.!
Multitasking, virtual memory, SMP, file
systems, device drivers, networking,
threading packages, etc.!

Cocoa provides a lightweight
object-oriented extension of the C
language, called Objective-C. It
comes with various frameworks
and tools.!
Cocoa is strongly influenced by
Smalltalk although it is based on
the compile-link-run model of C.!

F-Script in the Mac OS X Architecture

F-Script

Quartz, OpenGL, multimedia, printing,
event handling, low-level window
management, etc.
Strings, run loops, collections, processes,
resources, etc.!
Multitasking, virtual memory, SMP, file
systems, device drivers, networking,
threading packages, etc.!

F-Script adds an interactive
object-oriented environment to
Cocoa. It lets you interactively
manipulate Cocoa-based
objects. It also lets you write
scripts.

F-Script in the Mac OS X Architecture

Lightweight interactive & scripting layer

•  F-Script does not replace Mac OS X development tools, frameworks
and object run-time: developers continue to use existing tools & the
Objective-C language to develop new classes.

•  F-Script adds a lightweight interactive and scripting layer to the
Cocoa stack.

•  Emphasis is on interactive high-level and user-friendly object
manipulation rather than class development.

Lightweight interactive & scripting layer

  Emphasis is on interactive high-level and user-friendly object
manipulation rather than class development.

Lightweight interactive & scripting layer

  Emphasis is on interactive high-level and user-friendly object
manipulation rather than class development.

myObject is now registered in the Mac OS X distributed object
system, under the public name ‘foo’. Other applications can
connect to it and use it.

Lightweight interactive & scripting layer

  Emphasis is on interactive high-level and user-friendly object
manipulation rather than class development.

Block inspector allowing in-place editing of block code.

Lightweight interactive & scripting layer

  Emphasis is on interactive high-level and user-friendly object
manipulation rather than class development.

User-friendly access to core Mac OS X technologies (here: drawing a blue circle with Quartz).

High level object manipulation

  Emphasis is on interactive high-level and user-friendly object
manipulation rather than class development.

One of the main weakness of object technology: high-level
manipulation of data.

Weakness of object technology

  Years ago relational supporters argued that object-oriented

databases were a twenty-year step backward.

  They were right !!!

  Sure, object technology provides a high-level modeling approach.
But think about how low-level, object technology is compared to
relational algebra when it comes to manipulating whole sets of
data.

  This is a big challenge!

Weakness of object technology

  This criticism prompted a major enhancement of object

technologies: the development of object query languages.

  This development provided a solution to the lack of high-level
features found in traditional object languages.

  So far, results are mixed.

  Object query languages have not yet made their way into
mainstream object languages.

  In their most recent incarnations, object query languages adopt
quite a low profile. They are merely used as an interface to an
underlying database, and not as a general means of manipulating
objects (e.g. JDO Query Language, EJB Query Language, Gemstone
etc.). “The query is executed in the databse, not in the VM”.

High-level object manipulation

  We want something with the power of relational algebra built into

our programming language!

  Array programming principles (cf. Ken Iverson’s APL) to the rescue.

Smalltalk extended into an object query language allowing synthetic
expression of object manipulations.

  A new message send paradigm. The classic Smalltalk message construct
becomes a special case of a more general messaging system.

  A small kernel of high-level operators for object collection manipulation:
Compression, Reduction, Join, Transposition, etc. (implemented as
methods).

  Aim was to minimize extensions needed to include query language level
capacities in Smalltalk. From a technical point of view, can easily be
adapted to existing Smalltalk implementations.

“F-Script lets one easily do pretty complex data mining to drill down through samples of
thousands of galaxies distributed throughout a very large parameter space.”!

Prof. Roberto Abraham - Dept. of Astronomy & Astrophysics - University of Toronto.!

Graphical Environment: shell, object browser, etc.

F-Script Architecture

Little Smalltalk Interpreter (+ Array Extensions)

Object/Array Programming Engine

Object Model!

F-Script Object Model & Frameworks

  F-Script is based on Smalltalk syntax and concepts, but instead of
using Smalltalk’s object model and common Smalltalk frameworks, it
use the Cocoa object model and frameworks.

  Thanks to the integration with Cocoa, F-Script gains many advanced
features, which can be directly accessed by the F-Script user, "for
free":

•  Sophisticated GUI framework (Windows, Views, Event Model, Text Layout, etc.),
•  Unicode support,
•  Access to the Quartz features (Mac OS X graphic subsystem),
•  Distributed Objects,
•  Object Persistence,
•  Integration with Interface Builder,
•  Networking,
•  File System interaction,
•  UNIX abstractions: tasks, pipes, etc,
•  Collection classes,
•  Etc.

F-Script/Cocoa Object Model Example

  Derived from the Smalltalk object model.

  Smalltalk’s keyword syntax.

  Class and meta-classes are objects.

  Single inheritance. Support for protocols.

  Fully dynamic. Static typing optional.

  Flexible: the notion of “category” lets you add
methods to classes you have not produced.
The “poseAsClass:” method lets you replace a
class by another one a runtime, etc.

  isKindOfClass:, respondsToSelector:,
performSelector:, doesNotRecognizeSelector:,
etc.

F-Script is embeddable

  In addition to a stand-alone application, F-Script comes as an
embeddable Mac OS X framework.

  This means you can use an F-Script interpreter (or several ones) in
your own applications.

  F-Script components are accessed through an Objective-C API.

F-Script is embeddable

Developing with Project Builder and the F-Script framework

Object browser: browsing the workspace

Object browser asks for arguments

Browsing classes and meta-classes

On-Screen selection of widgets

Customizing the object browser

The key-value browser (by Joerg Garbers)

Using Mac OS X frameworks from F-Script

[:title | |window conversionScript form button line|
window := NSWindow alloc initWithContentRect:(125<>513 extent:400<>200)
 styleMask:NSTitledWindowMask+NSClosableWindowMask+NSMiniaturizableWindowMask+NSResizableWindowMask
 backing:NSBackingStoreBuffered
 defer:true.

conversionScript := [(form cellAtIndex:2) setStringValue:(form cellAtIndex:0)
floatValue * (form cellAtIndex:1) floatValue. form selectTextAtIndex:0].

form := (NSForm alloc initWithFrame:(60<>90 extent:320<>85)) autorelease.
form addEntry:@{'Exchange Rate per $1', 'Dollars to Convert', 'Amount in Other Currency'}.
form setAutosizesCells:true; setTarget:conversionScript; setAction:#value.

button := (NSButton alloc initWithFrame:(250<>20 extent:90<>30)) autorelease.
button setBezelStyle:NSRoundedBezelStyle; setTitle:'Convert'; setKeyEquivalent:'\r'.
button setTarget:conversionScript; setAction:#value.

line := (NSBox alloc initWithFrame:(15<>70 extent:370<>2)) autorelease.

window contentView addSubview:@{form, button, line}.
window setTitle:title; orderFront:nil.
]

Interface Builder and F-Script

F-Script Anywhere

  F-Script Anywhere, developed by Nicholas Riley, allows you to inject a
complete F-Script environment into any running Cocoa application -
even third-party applications!

F-Script Anywhere inside Chess

Download & Resources

www.fscript.org

  Binaries for Mac OS X
  Source code
  User guide with complete reference documentation
  Articles published by O’Reilly Network
  Paper from APL 2000, documenting the high-level extensions
  Additional tools, including F-Script Anywhere
  Mailing List

Thanks !
See you at

ESUG 2003 !

