Aspect-Oriented Programmin
g Smalltalk

IS——

A
Lris. Gybels

Rowvert Hirschfeld
N

Outline

* |Introduction to AOP

» Using AOP for Smalltalk with ...

— ASpPECtS
— Andrew

e Conclusion

IRtroduction —
{:

p

Aspect-Oriented Programming

Improve quality of software
by introducing new modularization
mechanisms
to deal with cross-cutting concerns.

Software Engineering

» Break problems into relatively
iIndependent smaller ones

* Implement and compose subproblems
as modules

* \What we want
— Natural mapping between problems and
modules
— Localization and separation of concerns

Why OOP?

 OOP excellent for modeling entities of
problem domain

* Problem domain objects map naturally
to Implementation objects
 Example: e-Library system
— Books -> Book class
— Library clients -> Client class
— Printers -> Printer class

Why AOP?

Example
— “Concurrent processing” concern?
— OQO: protect all objects with semaphores ...

OOP: problems when having to take into
account special ‘aspects’ that cross-cut a
system

Requires code ...

— In different places

— Not really related to modeling behavior from the
problem domain

Problems with cress-cutiing
CONCEerns

» Concern implementation intertwined with
Implementation of other concerns

e Concern not localized
e Hurts code ...

— Readability
— Evolvabllity
— Maintainability

AOP Goals

» “Modularize cross-cutting concerns”

» Create language/system to express

— Points in a program where aspects
iInfluence the program (joinpoints)

— How the aspect influences the program
there

Types of AOP languages

» High-level
— Special aspect-specific languages to
express aspects in (e.g. COOL)

“Method setTitle: and setYear: on book
objects cannot run concurrently”
->
coordinator Book {
mutexclusive {setTitle, setYear}

j

Types of AOP languages

» General purpose

— General purpose languages useable for

different aspects (e.g. Aspectd, AspectS,
Andrew, ...)

“‘When message setTlitle: is sent to a book
object first do a wait on the semaphore”

| —

Using iOP for Smalltalk
A

p

ASpectsS & Andrew.

 Both based on the AspectJ general-purpose
approach: when ... before/after do ...
— Joinpoints: key events in the execution of an OO
program
* Message sends
» Message receptions
« State updates/accesses
— Aspect’s influence: advice
« Smalltalk code

ASpectS Vs Andrew

* AspectS
— Uses Smalltalk to express joinpoints
* Andrew

— Uses special language based on Logic
Meta Programming to express joinpoints

| —

Using iOP for Smalltalk
A

AspectS

p

ASpPEeCcts In ASpectS

» Implemented as subclasses of a
Specific class, can have:
for keeping and

— regular variables .
acting on state

— regular methods particular to the
aspect (e.q.
Semaphores)

— special methods used to implement advice

Writing advice: example

AsMorphicMousingAspect>>adviceMouseEnter
A
qualifier: (AsAdviceQualifier attributes: { #receiverClassSpecific. })
pointcut: [Morph allSubclasses
select: [:each |
each includesSelector: #mouseEnter:]
thenCollect: [:each | AsJoinPointDescriptor
targetClass: each
targetSelector: #mouseEnter:]]
beforeBlock: [:receiver :arguments :aspect :client |
self
showHeader: '>>> MouseENTER >>>°
receiver: receiver
event: arguments first]

Pointcuts

» Blocks which compute a collection of
JoinpointDescriptors

» JoinpointDescriptors indicate method

execution joinpoints the advice
Influences: class + selector

* The full Smalltalk meta system can be
used!

Advice

« A Smalltalk block executed before or

after every joinpoint matching the
pointcut

* The block Is passed context data of the
joinpoint
— actual object that received the message
— arguments sent with the message

Tools

» No special support for defining and
editing aspects, just use system
browsers

» Browser extensions for showing the
Impact of aspects

X Hierarchy Browser: AsMorphicMousingAspect

AspectS-Examples MorphMousing

Object -- all -- [A¥adviceMouseEnter
Ashspect advice adviceMouseLeave
AsMorphicMousingAspect | private

instance ‘ ? J class

adviceMouseEnter

+ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier attributes: { *receiverClassSpe
pointcut: [
Morph withallSubclasses

select: [:each | each includesSelector: *mouseEnter:]

thenCollect: [ieach | AsJoinPointDescriptor
targetClass: each targetSelector: *mouseEnter:]]

peforeBlock: [ireceiver :arguments :aspect iclient |
self showHeader: ">»»»> MouseENTER »»' receiver: receiver

pointcut..,
what to show...

trowse full {b)
trowse hierarchy (h)
browse method {0)
browse protocol {(p)
fileOut {o)

printOut

senders of... {(n)
implementors of... {m)
inheritance (i)
versions (v)

inst var refs...

inst var defs...

class var refs...

class variables

class refs (N)

remove method (x)
more...

System Browser: Morph
Morphic-Kernel HandMorph geometry eToy |mouseDown:
Morphic-Basic HandMorphForRep thumbnail mouseEnter:
Morphic-Worlds Morph droppmg.-’grabbi mouseEnterDraggmg
Morphic-Support MorphExtension
Morphic-Text Suppo MorphicModel — pen ‘ mouseLeaveDraggmg
Morphic-¥idgets e ‘ ‘ class | Baming mouseMove:

Morphic-Demo
mouseEnter: evt

"Handle a mouseEnter event, meaning the mouse just entered my bounds with no button
pressed. The default response is to let my eventHandler, if any, handle it."

stepping and pr mouseStillDown:

self eventHandler ifNotNil:
[self eventHandler mouseEnter: evt fromMorph: self].

X Hierarchy Browser: PluggableTextMorph

Morphic-¥indows

Morph
BorderedMorph
MorphicModel
ComponentLikeModel
ScrollPane

Plpggable‘l'extlnlorgh

PR

instance ‘ ? | class

interactive &
editor access
transcript
pane events
geometry
object fileln
accessing

Al handlesKevboard:

kevStroke:
mouseEnter:
mouselLeave:

drag and dra

aspects...

inspect aspects applied
what to show...
browse full (b)
trowse hierarchy (h)
browse method (0)
browse protocol (p)

mouseEnter: event
super mouseEnter: event,
selectionInterwval ifNotNil:

[textMorph editor selectinterval: selectionInterval: setEmph

textMorph selectionChanged.

event hand newKevboardFocus: textMorph

fileOut (o)
printOut
senders of... {n)
implementors of... {m)
inheritance (i)
wversions (v)
inst var refs...
inst var defs...
class var refs...
class variables
class refs (N)

remove method {(x)
more...

| —

Using iOP for Smalltalk
A

Andrew.

p

Aspects In Andrew

» Similar to AspectS, Implemented as
subclasses of a specific class

— regular variables/methods
— advices
— logic predicates
» Uses logic meta programming to
express pointcuts

Why logic pointecuts?

» Cross-cutting: compute or describe?
— Computing allows flexible cross-cuts
— Cross-cutting Is best kept descriptive

* Logic programming combines the two
properties

Logic Vieta Programming

» Meta programming for Smalltalk using
logic language: SOUL

« Smalltalk programs represented as logic
facts
— class(?c)
— methodInClass(?c, ?selector, ?m)

* LICoR extensive library of logic rules to
reason about Smalltalk programs

L ogIc cross-cutting

» Adds predicates to reify joinpoints:
— reception(?jp, ?selector, ?args)
— send(?Jp, ?selector, ?args)
— get(?jp, ?instVar, ?value)
— set(?|p, ?instVar newV, ?, ?oldV)

Writing advice ...

before ?jp matching {
reception(?jp, #name)
} do

Transcript show: ‘'name accessed
through accessor

Code patterns & cress-cutting

« LMP successftully used to detect patterns In
code
— Smalltalk programming idioms
— Design patterns

e Can be used to ...
— Clearly capture the pattern underlying a cross-cut
— Specialize joinpoints (“Open weaver”)

ACCessor example

« Use LMP: to find accessors

ISAccessor(?class, ?selector, ?varName) if
class(?class),
methodNamed(?class, ?selector, ?method),
statements(?method, ?statements),
equals(?statements, <return(variable(?varName))>)

Observer

after ?jp matching {
reception(?jp, ?selector),
withinClass(?jp, [Person]),
notify([Person], ?selector, ?property),
viewlnterestedIn(?property)

} do

views do: [:view | view changed: ?property asSymbol]

Person]
Person]

Person|

Observer

#birthDate:], [#birthDate]).
#birthDate:], [#age]).

#name:], [fname])

Observer

viewlnterestedln([#age]).
viewlnterestedin([#name])

Using AOP for Smalltalk
AspectsS Vs Andrew

» Pointcuts more * Pointcuts require
familiar for a one to learn new
Smalltalk language

programmer

Implementing' AOP-for
Smalltalk —

L\

b

Final notés & Conclusiens

| —

p

Conclusions

» AspectS vs Andrew

— AspectS’'s pointcuts more familiar to
Smalltalk programmer

— Andrew pointcut language provides
enhanced readability + extensive code
reasoning library

» AspectS & Andrew vs AspectJ

— Use of full MOP allows one to find more
code patterns to cross-cut

Links

prog.vub.ac.be/~kgybels/andrew/

www.prakinf.tu-ilmenau.de/~hirsch/
Projects/Squeak/AspectS

VisualWorks 7 distro
WwWw.aosd.net

kris.gybels@vub.ac.be
hirschfeld@acm.org

