
emicklei@philemonworks.com

Ernest Micklei
emicklei@philemonworks.com
Amersfoort, The Netherlands

ESUG 10th
Douai, August 29 2002

emicklei@philemonworks.com

  RSI (Repetitive Strain Injuiry)
  Fast access to simple programs (=objects)
  Explore mixed interfaces (pixels-ASCII)
  Simplest UI possible
  client-server
  module for SmallScript

emicklei@philemonworks.com

  A widget displays an aspect of an object in a
defined region of a window

  A region is defined by a rectangular area of
characters organized in rows and columns

  Keyboard events are handled by the controller
of the widget (MVC)

emicklei@philemonworks.com

  TerminalForm is a UI component that displays
a grid of ASCII characters

  For displaying, widgets map their contents to
characters of that grid

emicklei@philemonworks.com

  Core classes are:
 TerminalCharacter
 TerminalGrid
 TerminalWidget
 TerminalController

  Others
 CompositeWidget, Appearance, Form

emicklei@philemonworks.com

S M A L L T A L K

(grid at: (1@2)) = $M

access by Points: row@column

emicklei@philemonworks.com

  Terminal screen is showing a matrix of
graphical characters organized in rows and
columns.

  TerminalCharacter
  TerminalGrid

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

emicklei@philemonworks.com

  holds collection of TerminalCharacter
  read/write strings to grid (matrix)
  for display only

 Terminal OS-window holds grid

emicklei@philemonworks.com

| window txt |

"window"
window := TerminalWidget textClass in: (1@1 corner: 24@80).

"build"
txt := TerminalWidget textClass in: (1@1 corner: 8@20).
txt string: 'This is a Smalltalk terminal application'.
window add: txt.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
list := TerminalWidget listClass in: (1@1 corner: 8@20).
list items: #('ESUG' '10th' 'Douai' 'France').
window add: list.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
image := TerminalWidget imageClass in: (1@1 corner: 8@20).
image bitmap: (Bitmap fromFile: 'splash.bmp').
window add: image.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
menu := TerminalWidget menuClass in: (1@1 corner: 4@20).
menu add: '1. Stockrates' key: $1 do: [self startStockrateView].
menu add: '2. Accounts' key: $2 do: [self startAccountView].
menu addLine.
menu add: '3. Invoices' key: $3 do: [self startInvoicesView].
window add: menu.

"open"
Terminal show: window

emicklei@philemonworks.com

| window list |

"window"
window := TerminalWidget windowClass in: (1@1 corner: 24@80).

"build"
menuBar := TerminalWidget menuBarClass in: (1@1 corner: 1@80).
menuBar add: 'File' key: $f menu: self fileMenu.
menuBar add: 'Edit' key: $o menu: self editMenu.
menuBar add: 'Help' key: $h menu: self helpMenu.
window add: menuBar.

"open"
Terminal show: window

emicklei@philemonworks.com

  is top container for terminal windows
  can show, hide and (will in future) stack

windows

  implementation is dialect specific
 but requires minimal behavior

emicklei@philemonworks.com

  widgets claim a region of the screen
  has a controller to handle keyboard events
  has a model for storing its domain value
  has an appearance
  is the "V" in MVC
  when:send:to:, broadcast: (AOS)

emicklei@philemonworks.com

  displays a single character in some (fixed) font
  can display decoration (border lines)
  has an appearance

emicklei@philemonworks.com

  character (re)display
  inputController
  appearance

emicklei@philemonworks.com

  observation: painting complete screen is too
expensive

  damage rectangles intersection is too
expensive

  widget knows which characters to update

  but, does not help with overlapping OS-
windows
 may need double buffering

emicklei@philemonworks.com

  like the VW ParagraphEditor, but...
  break text into lines, localizing updates
  replace CRLF with CR

 every character takes up one space
  cursor can be beyond text
  cursor can be on CR position
  adopt color emphasis
  scrolling (vertically only)
  no TAB

emicklei@philemonworks.com

  window appearance
  widget appearance
  character appearance
  properties "inherited" by composition hierarchy
  modifiable at each "level"

emicklei@philemonworks.com

TerminalObjectAppearance (abstract superclass)
 foreground background selectionForeground
selectionBackground

 TerminalWindowAppearance
 font fontName characterWidth characterHeight

 TerminalWidgetAppearance
 windowAppearance borderColor
showBorderOnFocus

 TerminalCharacterAppearance
 widgetAppearance

emicklei@philemonworks.com

  finds colors from parent appearance
 a WindowAppearance

  but can override values by replacing nil-values
  example:

TerminalObjetAppearance>>background

 ^background isNil
 ifTrue:[self hasParent
 ifTrue:[nil]
 ifFalse:[self parentAppearance background]]
 ifFalse:[background]

emicklei@philemonworks.com

  initially meant for per-character coloring
  became obsolete when introducing

EmphasizedText
 VA rewrite of VW Text

  'ESUG' asEmphasizedText
 from: 1
 to: 2
 setForeground: Color yellow

emicklei@philemonworks.com

  demo

emicklei@philemonworks.com

  demo

emicklei@philemonworks.com

  shell interface to an almost empty object space
(image)

  demo

emicklei@philemonworks.com

  implementation issues
  design issues
  fit of purpose issues
  exploring the "Smalltalk Objects Shell"

emicklei@philemonworks.com

  rewrite InputController
 got tips from Samuel Shuster

  finish port from VAST to SmallScript
 put it on the web

  text selection for InputController
 cut,copy,paste

  handle OS-paints
  build from Pollock XML?

emicklei@philemonworks.com

  display methods
 draw a line
 draw a String character
 set colors

  dispatch keyboard events
  handle focus events
  have a window to paint on

  (almost) done for SmallScript

emicklei@philemonworks.com

  how to design characterbased applications
 and still be object-oriented

  what do I need for client-server architecture
 maybe TELNET is fine, why bother

  missing widgets? buttons,dropdowns
 do I really want to mimic Windows

emicklei@philemonworks.com

  motivation for porting to "imageless"
SmallScript

  use objects in stead of just (fat)executable

  think about what objects are really powerful
but do not need a UI
 graphical image processing
 3D language generators

emicklei@philemonworks.com

  Re-inventing wheels? (curses)
  Is mixing character-based and full graphics

only just "yes we can do-it" ?
  Will performance be acceptable ?

emicklei@philemonworks.com

  Can be done (what else would you expect)
  Might be useful
  Mixing with other widgets not explored
  Highly portable (to other dialects)
  Mouseless apps

emicklei@philemonworks.com

Reference module: PhilemonTerminalView.

[
 | window | := Terminal windowClass in:(1@1 corner: 20@40).
 | text | := Terminal textClass in:(2@2 corner: 19@39).
 window add: text.
 Terminal show: window

]

".dll = 56kB"

emicklei@philemonworks.com

download @
http://www.philemonworks.com

