
7/29/10 ESUG 2001, Essen 1

QSOUL/Aop

Aspect Oriented Software
Development using Logic

Meta Programming

Johan Brichau,
Programming Technology Lab,
Vrije Universiteit Brussel,
Brussel, Belgium

7/29/10 ESUG 2001, Essen 2

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 3

Software Development
 Software development today happens through

hiërarchical decomposition in ‘generalised
procedures’
  Break program complexity
  Modularize concerns

7/29/10 ESUG 2001, Essen 4

Aspect Oriented Software
Development

 But some concerns cannot be modularized
and occur in every module of the
decomposition
  Cross-cutting concern (= aspect)
  E.g. synchronization, distribution, …

7/29/10 ESUG 2001, Essen 5

Aspect Oriented Software
Development
 AOSD tries to modularize these aspects.
 Aspects are combined with component program

using a weaver
 Aspects specified in an aspect-language

  Describing
•  Cross-cutting
•  Functionality

  Examples:
•  COOL (synchronisation)
•  RG (loop fusion optimisation)
•  AspectJ (advices over methods)

7/29/10 ESUG 2001, Essen 6

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 7

Goals of QSOUL/Aop (1)

 Declarative Aspect Language
  Aspects have a declarative nature
  Examples

•  Synchronisation: declare what methods are
synchronized

•  Error handling: declare what errors should be
catched where and what should be executed.

•  Wrap methods: declare what methods should be
wrapped and what should be executed.

7/29/10 ESUG 2001, Essen 8

Goals of QSOUL/Aop (2)

 User-defined aspect-languages
  An open framework that allows definition of

user-defined aspect-languages
  Express one aspect-language in another aspect-

language
  Examples:

•  A ‘wrap methods’ aspect-language could be used to
introduce synchronisation or error handling, but is
less suited than a specialized ‘synchronisation’ or
‘error handling’ aspect-language.

7/29/10 ESUG 2001, Essen 9

Goals of QSOUL/Aop (3)

 Combination and composition of several
aspects
  Implemented in one aspect-language
  Implemented in different aspect-languages
  Detect and resolve conflicts between aspects

 Example conflict:
  If a scheduler-aspect does not know about a

synchronisation aspect, deadlocks can occur!

7/29/10 ESUG 2001, Essen 10

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 11

Logic Meta Programming

 Combines a logic meta language with
a standard object-oriented base
language
  base-level programs are expressed as

terms, facts and rules at the meta level
  meta-level programs can manipulate and

reason about the base-level programs

7/29/10 ESUG 2001, Essen 12

QSOUL: setup

Reason about and manipulate
source code:

 check, extract, search,
 generate, enforce, transform

Smalltalk
implementation

artefacts

M
eta-level Interface

QSOUL Smalltalk
Image

7/29/10 ESUG 2001, Essen 13

QSOUL language

 Prolog and…
  Smalltalk terms

  Smalltalk clauses

  Quasi Quoted Code

write(?text) if 	

	

[Transcript show: (?text asString). true].	

allClasses([Smalltalk allClasses])	

aCollection object	

true	

methodCode(Foo,bar, { ^ nil })	

7/29/10 ESUG 2001, Essen 14

LMP achievements
 Emerging technique to build state-of-the art

software development tools
 In particular, tools to support co-evolution in all

facets and phases of the software life-cycle
•  information in implementation and earlier life-cycle phases

may evolve independently
•  need to keep information in these phases synchronised

 To support advanced software engineering
techniques

7/29/10 ESUG 2001, Essen 15

LMP Achievements

Declarative Reasoning about object-oriented base programs
supporting the Co-Evolution of design and implementation

 Extract design information from the implementation.
 Verify the implementation with the corresponding design.
 Generate the implementation from the design
Theo D'Hondt, Kris De Volder, Kim Mens & Roel Wuyts, Co-evolution of Object-
Oriented Software Design and Implementation. In Proceedings of SACT 2000. Kluwer
Academic Publishers, 2000

7/29/10 ESUG 2001, Essen 16

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 17

Aspect Oriented Logic Meta
Programming (AOLMP)
 Aspect language embedded in logic language.
 An aspect language consists of two parts

  the aspect-code
  how the aspect crosscuts the base program

 Inference engine gathers the logic declarations of
all aspects and weaves them in the base program.

 Using logic rules we can build a domain-specific
aspectlanguage embedded in the logic language.

 E.g. TyRuBa and QSOUL/Aop

7/29/10 ESUG 2001, Essen 18

AOLMP using QSOUL/Aop
 Composition-mechanism to support composition

of aspects
 Integrated Smalltalk-weaver
 Exploit symbiosis

  Use reasoning about base program to specify user-
defined crosscuts. (E.g.: all places in the program
where a certain variable is initialized)

  Multi-paradigm programming (logic & procedural
programming) eases complexity of rules that implement
a user-defined aspect-language

7/29/10 ESUG 2001, Essen 19

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 20

QSOUL/Aop

 Consider a simple aspect-language for
error-handling:
  onError(?class,?selector,?error,?error-handling-block)

 Consider two simple error-handling
aspects:
  onError([Array],[#at:put:],[OutOfBoundsError],

 {[:e | … handle exception e…]})
  onError(?class,[#at:put:],[OutOfBoundsError],{…}) if

 subclass([SequenceableCollection],?class)

7/29/10 ESUG 2001, Essen 21

QSOUL/Aop
 Consider a wrap-around aspect-language:

  around(?class,?selector,?code)
 Define the meaning of the error-handling aspect-

language in terms of the wrap-around aspect-
language
  around(?class,?selector,

 {[original()] on: ?error do: ?errorcodeBlock}) if
 onError(?class,?selector,?error,?errorcodeBlock).

 Define the wrap-around aspect-language in terms
of another aspect-language…

7/29/10 ESUG 2001, Essen 22

QSOUL/Aop

 Basic weaver
  Hard-coded in Smalltalk
  Invisible overriding of methods

•  Only supports method-crosscuts

  Share state in group of overriden methods

Basic weaver
Smalltalk

QSOUL

7/29/10 ESUG 2001, Essen 23

Basic weaver

 Basic aspect language: crosscut declarations
  weave(method(?class,?selector),{<aspect-code>})

Override the method ?selector in ?class with
<aspect-code>

  scopeOf(?instVarList,{ <aspect-scope-code> })
Share instance variables in all executions of
aspect-code where <aspect-scope-code> results in
same value. Create new instance variables where
<aspect-scope-code> results in a new, unique
value.

N>0

N=0,1

7/29/10 ESUG 2001, Essen 24

Basic weaver

 Basic aspect language: aspect-code weave(method(?
class,?selector),{<aspect-code>})
  Smalltalk code and…
  thisObject

Access to the current receiver in aspect-code
  original()

Execute the original method (with the original
arguments)

  thisAspect
not yet…

7/29/10 ESUG 2001, Essen 25

A basic-weaver aspect: Logging
Write the size of the collection to the Transcript every time after an
 element is added to an Array or an OrderedCollection

Basic weaver
Smalltalk

QSOUL

weave(?pc, { |tempResult| tempResult := original().
 Transcript write: thisObject size asString.
 ^ tempResult }) if
 location(?pc).

location(method([Array],at:put:)).
location(method([OrderedCollection],add:))

7/29/10 ESUG 2001, Essen 26

Building your own aspect
language

 An AspectWeaverMixin…
  …defines a new aspect-language in terms of

another aspect-language.
  …defines a transformation of a higher-level

aspect language to a lower-level aspect-
language

  …can be mixed with other aspectweavermixins
and the basic weaver to form a complete
aspectweaver

7/29/10 ESUG 2001, Essen 27

Building your own aspect
language

Basic weaver
Smalltalk

QSOUL

weave(method(?class,?sel), { |tempResult| tempResult := original().
?code. ^ tempResult }) if

 after(execution(?class,?sel),?code).

after(execution(?class,?selector),{Transcript write: thisObject size asString}) if
 location(?class,?selector).

location([Array],at:put:).
location([OrderedCollection],add:)

7/29/10 ESUG 2001, Essen 28

Building your own aspect
language

Basic weaver
Smalltalk

QSOUL
Advice AspectWeaverMixin

location([Array],at:put:).
location([OrderedCollection],add:)

Size Logging AspectWeaverMixin

before/after/around

location

weave

7/29/10 ESUG 2001, Essen 29

Combination of aspect-languages

Basic weaver
Smalltalk

QSOUL

Logging and Synchronizing
AspectWeaverMixin

Logging aspect Synchronization aspect

7/29/10 ESUG 2001, Essen 30

Combination of aspect-languages

Basic weaver
Smalltalk

QSOUL

Advice
Combination Weavermixin

Logging
Weavermixin

Synchronization
Weavermixin

Logging
aspect

Synchronization
 aspect

Advice Weavermixin

7/29/10 ESUG 2001, Essen 31

QSOUL/Aop:
Open crosscut language
 QSOUL’s reasoning about Smalltalk basecode

allows detection of patterns.
  Extract implicit call-structure
  Extract design patterns
  Etc…

 This information can be used to implement user-
defined crosscuts
  Method that initializes instance variables
  Methods that send messages to a Stack instance
  Etc…

7/29/10 ESUG 2001, Essen 32

Integration in Smalltalk

Smalltalk system

QSOUL/Aop AspectWeaverMixins
(an AspectWeaverMixin is a logic program) Smalltalk metasystem

QSOUL/Aop basic-weaver

Invisible
generated aspect-class class

Invisible woven-calls

metaclass

7/29/10 ESUG 2001, Essen 33

QSOUL/Aop: Future Work
 thisAspect
 Scope per aspect-instance variable
 Aspect methods
 Extend basic weaver to weave on other language

elements
 Technical improvements

  Use method wrappers instead of hidden classes
  Check for uses of self in aspect-code
  …

7/29/10 ESUG 2001, Essen 34

Demonstration:
The Conduits Framework

7/29/10 ESUG 2001, Essen 35

Aspects in Conduits-Framework

 User Interface update
  After each fill, update view

 Synchronization and message order
  fill and drain: in alternate order + blocking

 Overflow logging
  Setting of content everywhere should produce

same message (throws error?)
 Etc…

7/29/10 ESUG 2001, Essen 36

Links

http://prog.vub.ac.be/poolresearch/aop/qsoulaop.html

QSOUL/Aop:

QSOUL2:

Declarative (Logic) Meta Programming:

http://prog.vub.ac.be/poolresearch/dmp/

http://prog.vub.ac.be/poolresearch/qsoul/qsoul2.html

johan.brichau@vub.ac.be

7/29/10 ESUG 2001, Essen 37

QSOUL LMP-tool

 Strong symbiosis between logic language
and Smalltalk
  Logic language acts on current Smalltalk image
  Smalltalk objects are constants in the logic

language
  Logic clauses can execute parameterised

Smalltalk expressions
 Code generation through manipulation of

quasi-quoted codestrings

7/29/10 ESUG 2001, Essen 38

Aspect Oriented Software
Development

 Subject Oriented Programming and
Multidimensional Separation of Concerns
  Different views on the program’s

decomposition, each addressing a concern
  Compose the different views with composition

rules
 Composition Filters

  Place wrappers around encapsulations, each
addressing a cross-cutting concern

7/29/10 ESUG 2001, Essen 39

Aspect Oriented Software
Development

 Design Patterns
  Use exisiting ‘generalised procedure’

techniques to separate cross-cutting concern
(e.g. Visitor pattern)

 Aspect Oriented Programming
  Encapsulate aspects
  Aspect-weaver composes aspects with other

encapsulations guided by a pointcut-language

7/29/10 ESUG 2001, Essen 40

AOLMP using TyRuBa

Logic program
representing aspect

declarations	

Weaver	

Logic Program	

Facts representing	

basic functionality code	

+	

Code 	

with 	

aspects	

Basic Functionality Code	

Parser	

