. QS()UL/Aop

AT TR 4‘516?%,#%

Aspect Oriented Software
Development using Logic
Meta Programming

Johan Brichau,
Programming Technology Lab,
Vrije Universiteit Brussel
Brussel, Belgium

7/29/10 ESUG 2001, Essen ' 1

Software Development

~Software development today happens through
hi€rarchical decomposition in ‘generalised
procedures’

e Break program complexity

e Modularize concerns

7/29/10 ESUG 2001, Essen 3

Aspect Oriented Software
Development

&~But some concerns cannot be modularized
and occur 1n every module of the
decomposition

o Cross-cutting concern (= aspect)

e E.g. synchronization, distribution, ... A

gy —

7/29/10 ESUG 2001, Essen

Aspect Oriented Software
Development

&AQOSD tries to modularize these aspects.

& Aspects are combined with component program
using a weaver

&= Aspects specified in an aspect-language

e Describing .
e Cross-cutting

* Functionality

o Examples: T
* COOL (synchronisation)

* RG (loop fusion optimisation) *

» Aspect] (advices over methods)

7/29/10 ESUG 2001, Essen

Goals of QSOUL/Aop (1)

&Declarative Aspect Language
o Aspects have a declarative nature

o Examples

 Synchronisation; declare what methods are
synchronized

 Error handling: declare what errors should be
catched where and what should be executed.

 Wrap methods: declare what methods should be
wrapped and what should be executed.

7/29/10 ESUG 2001, Essen

Goals of QSOUL/Aop (2)

aUser-defined aspect-languages

e An open framework that allows definition of
user-defined aspect-languages

o Express one aspect-language in another aspect-
language
o Examples:

* A ‘wrap methods’ aspect-language could be used to
introduce synchronisation or error handling, but is
less suited than a specialized ‘synchronisation’ or
‘error handling’ aspect-language.

7/29/10 ESUG 2001, Essen

Goals of QSOUL/Aop (3)

&Combination and composition of several
aspects
o Implemented 1n one aspect-language
o Implemented in different aspect-languages

e Detect and resolve conflicts between aspects

aExample conflict:

o If a scheduler-aspect does not know about a
synchronisation aspect, deadlocks can occur!

7/29/10 ESUG 2001, Essen

Logic Meta Programming

~Combines a logic meta language with
a standard object-oriented base
language
e base-level programs are expressed as
terms, facts and rules at the meta level

e meta-level programs can manipulate and
reason about the base-level programs

7/29/10 ESUG 2001, Essen 11

QSOUL: setup

QSOUL

Reason about and manipulate
source code:
check, extract, search,
generate, enforce, transform

90BI9)U| [9AS|-BIBIN

Smalltalk
Image

A\ 4

Smalltalk
implementation
artefacts

7/29/10 ESUG 2001, Essen

12

QSOUL language

&Prolog and...

o Smalltalk terms
allClasses([Smalltalk allClasses])

o Smalltalk clauses aCollection object

write(?text) if
[Transcript show: (’text asString). true].
e Quasi Quoted Code

methodCode(Foo,bar, { A nil })

true

7/29/10 ESUG 2001, Essen 13

[LMP achievements

~Emerging technique to build state-of-the art
software development tools

&=In particular, fools to support co-evolution i all
facets and phases of the software life-cycle

 information in implementation and earlier life-cycle phases
may evolve independently

* need to keep information in these phases synchronised

&To support advanced software engineering
techniques

7/29/10 ESUG 2001, Essen

14

[.LMP Achievements

Declarative Reasoning about object-oriented base programs
supporting the Co-Evolution of design and implementation

eExtract design information from the implementation.
o Verify the implementation with the corresponding design.

eGenerate the implementation from the design

Theo D'Hondt, Kris De Volder, Kim Mens & Roel Wuyts, Co-evolution of Object-

Oriented Software Design and Implementation. In Proceedings of SACT 2000. Kluwer
Academic Publishers, 2000

7/29/10 ESUG 2001, Essen 15

Overview

e Aspect Oriented Software Development
Goals of QSOUL/Aop

al.ogic Meta Programming in QSOUL

~ e=Aspect Oriented Logic Meta Programming
&QSOUL/Aop tool

&Demo time

7/29/10 ESUG 2001, Essen

16

Aspect Oriented Logic Meta
Programming (AOLMP)

e Aspect language embedded in logic language.

& An aspect language consists of two parts
o the aspect-code
e how the aspect crosscuts the base program

~=Inference engine gathers the logic declarations of
all aspects and weaves them in the base program.

&Using logic rules we can build a domain-specific
aspectlanguage embedded in the logic language.

&E.g. TyRuBa and QSOUL/Aop

7/29/10 ESUG 2001, Essen 17

AOLMP using QSOUL/Aop

&Composition-mechanism to support composition
of aspects

~Integrated Smalltalk-weaver
aExploit symbiosis
o Use reasoning about base program to specify user-

defined crosscuts. (E.g.: all places in the program
where a certain variable 1s initialized)

e Multi-paradigm programming (logic & procedural
programming) eases complexity of rules that implement
a user-defined aspect-language

7/29/10 ESUG 2001, Essen 18

QSOUL/Aop

& Consider a simple aspect-language for

error-handling:
e onError(?class,?selector,?error,?error-handling-block)

a=Consider two simple error-handling
aspects:

o onError([Array],[#at:put:],| OutOfBoundsError],
{[:e] ... handle exception ¢...]})

o onError(?class,[#at:put:],[OutOfBoundsError],{...}) if
subclass([SequenceableCollection],?class)

7/29/10 ESUG 2001, Essen 20

QSOUL/Aop

aConsider a wrap-around aspect-language:
o around(?class,?selector,?code)

&Define the meaning of the error-handling aspect-
language in terms of the wrap-around aspect-
language

o around(?class,?selector,

{[original()] on: ?error do: ?errorcodeBlock}) if
onError(?class,?selector,?error, ?errorcodeBlock).

&Define the wrap-around aspect-language 1n terms
of another aspect-language...

7/29/10 ESUG 2001, Essen 21

QSOUL/Aop

~Basic weaver
e Hard-coded in Smalltalk

e Invisible overriding of methods

e Only supports method-crosscuts

e Share state i group of overriden methods

QSOUL | | | I
Smalltalk
Basic weaver
7/29/10 ESUG 2001, Essen

22

Basic weaver

a»Basic aspect language: crosscut declarations

o weave(method(?class,?selector), {<aspect-code>})
Override the method ?selector in ?class with

<aspect-code>
o scopeOf(7instVarList,{ <aspect-scope-code> })
Share instance variables in all executions of

aspect-code where <aspect-scope-code> results in
same value. Create new instance variables where

- <aspect-scope-code> results in a new, unique
value.

7/29/10 ESUG 2001, Essen 23

Basic weaver

~Basic aspect language: aspect-code weave(method(?
class,?selector), {<aspect-code>})

e Smalltalk code and... f
o thisObject

Access to the current receiver in aspect-code

e original()
Execute the original method (with the original
arguments)

o thisAspect
not yet...

7/29/10 ESUG 2001, Essen 24

A basw-weaver aspect: Loggmg

. Wm‘e the size of the collection to the Transcript every time after an
elemgnt IS addgd to an Army or an Or ;ieredCollectlon

A A 2T

?pc
method([Array],at:put:)
method([OrderedCollection],add:)

Smalltalk

7/29/10 Basic weaver | ot

Building your own aspect
language

a~An AspectWeaverMixin...

e ...defines a new aspect-language in terms of
another aspect-language.

e ...defines a transformation of a higher-level
aspect language to a lower-level aspect-
language

e ...can be mixed with other aspectweavermixins

and the basic weaver to form a complete
aspectweaver

7/29/10 ESUG 2001, Essen 26

Bulldlng your own aspect
language

VSIS A A 2T

DN 237 o S BRTRIESTE 7o 1 L R T SR I Pl e EPR W 1257 L SR

after(execution(?class,?selector),{Transcript write: thisObject size asString}) if
location(?class,?selector).

location(|Arrayl,at:put:).

location(|OrderedCollection],add:)

?2class ?sel
?code

?class ?sel ?code

Smalltalk

7/29/10 | Ba—sw Wgaver | ‘ T,

Bu11d1ng your own aspect

language
~ Size Logging AspectWeaverMixin - .location
| before/after/around
weave

Smalltalk

229110 | Basic Weavgr ; Gt AT

- Combination of aspect- languages

TGS 2+ -nmmm!a\am P SRS FOF Sl T IMDME“BV o5 demmmms;p

Logging aspect

.....

= -

7/29/10 Basic Wgaver | ‘ 29

Combination of aspect-languages
A Logging o e ' |
aspect

Logging
Weavermixin

Smalltalk

Basic weaver ‘
7/29/10 ESuu zuui, Bssen 30

QSOUL/Aop:
Open crosscut language

QSOUL’s reasoning about Smalltalk basecode
allows detection of patterns.

o Extract implicit call-structure
o Extract design patterns
e Efc...
&>This information can be used to implement user-
defined crosscuts
o Method that initializes instance variables
o Methods that send messages to a Stack instance
o Efc...

7/29/10 ESUG 2001, Essen 31

 Integration in Smalltalk

QSOUL/Aop AspectWeaverMixins '
(an AspectWeaverMixin is a logic program) Smalltalk metasystem

metaclass

Smalltalk system
class
e oven-calls #

QSOUL/Aop: Future Work

a»thisAspect
& Scope per aspect-instance variable
e Aspect methods

aExtend basic weaver to weave on other language
clements

&Technical improvements
o Use method wrappers instead of hidden classes
e Check for uses of self in aspect-code

7/29/10 ESUG 2001, Essen 33

Demonstration:
The Conduits Framework

7/29/10 ESUG 2001, Essen 34

Aspects in Conduits-Framework

aUser Interface update
e After each fill, update view

~Synchronization and message order
o fill and drain: 1n alternate order + blocking

aQOverflow logging

o Setting of content everywhere should produce
same message (throws error?)

LEtC. ..

7/29/10 ESUG 2001, Essen 35

[inks

Declarative (Logic) Meta Programming:

http://prog.vub.ac.be/poolresearch/dmp/
QSOUL2:

http://prog.vub.ac.be/poolresearch/qsoul/qsoul2.html

OSOUL/Aop:

http://prog.vub.ac.be/poolresearch/aop/gsoulaop.html
johan.brichau@vub.ac.be

7/29/10 ESUG 2001, Essen 36

QSOUL LMP-tool

& Strong symbiosis between logic language
and Smalltalk
o Logic language acts on current Smalltalk 1mage
o Smalltalk objects are constants in the logic
language
o Logic clauses can execute parameterised
Smalltalk expressions

a(Code generation through manipulation of
quasi-quoted codestrings

7/29/10 ESUG 2001, Essen 37

Aspect Oriented Software
Development

aSubject Oriented Programming and
Multidimensional Separation of Concerns

o Different views on the program’s
decomposition, each addressing a concern

o Compose the different views with composition
rules

~Composition Filters

e Place wrappers around encapsulations, each
addressing a cross-cutting concern

7/29/10 ESUG 2001, Essen 38

Aspect Oriented Software
Development

aDesign Patterns

o Use exisiting ‘generalised procedure’
techniques to separate cross-cutting concern
(e.g. Visitor pattern)
a=Aspect Oriented Programming
o Encapsulate aspects

o Aspect-weaver composes aspects with other
encapsulations guided by a pointcut-language

7/29/10 ESUG 2001, Essen 39

AOLMP using TyRuBa

| Basic Functionality Code |

Facts representing

basic functionality code

-+

Logic program
representing aspect
declarations

J

7/29/10

Weaver

Logic Program

ESUG 2001, Essen

Code
with
aspects

