
John W. Sarkela
jsarkela@exobox.com
sarkela@home.com

 A Production Quality Smalltalk
System for the masses

 Extend the Spirit of Camp Smalltalk

 Derived from the original Apple
Smalltalk-80 license.

 Self hosting VM
– VM written in Smalltalk
– Smalltalk to C translator
– Direct object pointers
–  Incremental Garbage Collector
– Dynamically loaded named primitives

 Network Support
– Web Server, Web Browser, Email Client,

Chat, Ftp, Telnet, MD5, DES . . .
 Sound Support

– FM Sound Synthesis, KLATT speech
synthesis, MIDI support . . .

 Graphics Support
– 3D Engine, VRML, Morphic, Wonderland

 Great for education
–  It’s free, it runs on all platforms, it has

Freecell
 Suitable for embedded devices

– Runtime may be made small
– All capabilities written in Smalltalk

 Lots of potential for developers
– Functionality ready for reuse

 Tell them, “Ralph sent me.”
The UIUC summer OO design course

used Squeak and XP to build a
functional object swiki in four weeks
with 6 programmers who also learned
Smalltalk at the same time

 So many things “almost” worked . . .

 Squeak needs a production quality
base library

 The core team is more interested in
experimentation and exploration

 Squeak may be the first time many
new programmers see Smalltalk

 Most of Smalltalk’s problems are not
technical in nature

 Lack of success stories is not really
the issue

 The Squeak out-of-box experience is
enough to prevent anyone from
exploring Smalltalk further.

 Use a Camp Smalltalk style
development

 Bring the Camp to developers,
whereever they may live

 Work as closely as possible with
Squeak Central to incorporate
refinements into the base system

 Define a minimal development image
 Refactor this image until

– All methods may be compiled from
source code

– There are no undeclared references
– All globals have a known initial state
– Leverage Camp Smalltalk ANSI tests

 Factor remaining functionality into
modules such that
– There are no method or class

redefinitions
– The module dependency lattice is well

defined
– As many unit tests as possible are

generated

 Refactor the base into
– A headless image with just enough

included to be able to bind image
segments

– A set of bindable UI’s, including a text
based stdin,stdout,stderr UI
•  (Anyone for an emacs browser???)

 Build ImageSegments from defined
modules

