
Internet application development 
using a meta-repository 



Contents 

  Introduction 
  Dynamic Object Models 
  Business application framework 
  Internet framework 
  Building applications 
  Demo 
  Design 
  References 



Introduction 

  Application requirements 
  Configurable, flexible, adaptable 
  ‘End-user’ ‘programmable’ 

  No hard-coding of model and business rules 
  Dynamic 

  High-level 
  Domain-specific languages 

  Metadata 
  Self-description 



Dynamic Object Models 

  A system with a dynamic object model has 
an explicit object model that it interprets at 
run-time. If you change the object model, the 
system changes its behavior. 

  The model defines the objects, their states, 
the events, and the conditions under which 
an object changes state. 

  Business rules can be stored in a dynamic 
object model that makes it easy to evolve the 
way a company does their business. 



Business application framework 

  Goal 
  End-user applications 

  Databases, electronic documents, workflow 
•  Client / server + Internet 

  Common business model 
  Flexible application development framework 

  Subject to change by ‘end-user’ 
  Business model 

  Organization model, object model, business rules, … 
  Application specifications 

  Overview lists, forms, query screens, ... 



Approach 
Traditional data repository 

Repository 

Employee Name  Employee ID  Department ID 
Smith   1280   12 
Adams   1281   19 
Washington  1282   12 

End-user applications 



Approach 
Adding meta-repository 

Meta-repository 

End-user tools Configuration and administration tools 

Employee 

Person 
Name 
Id 

Department 
Id 

Works in 

Layout  User  Application 
My layout  Tilman  Documentation 
Default   Documentation 

Object model 

Application specifications 



Approach 
Combining repositories 

End-user, configuration and administration tools 

Object model 

Meta-model 

Applications, views, queries, 
rules, processes 

Objects 

(Meta-)Repository 

Employee Name  Employee ID  Department ID 
Smith   1280  12 
Adams   1281  19 
Washington   1282  12 



Building applications 

  Define or extend object model 
  Object types, associations and basic constraints 

  Define application environment 
  Views on shared object model 

  Business rules 
  Authorizations, user-defined constraints, event-

condition-action rules, workflow  processes 

  Object behavior 



Building Internet applications 

  Re-use existing framework 
  Application environment, queries, layouts, 

business rules, ... 

  Internet server 

  Framework client 
  4-Tier architecture 

•  Browser - HTTP server - Internet server - DB 

  Orthogonal application view 



Demo 
Object model and aplication editors 



Demo 
Fully functional default application 



Demo 
Customizing default application 



Demo 
Configuring Internet application 



Demo 
Internet query screen 



Demo 
Internet forms 



Design 

  4-Tier architecture 

  Partial use of VisualWave 
  Session management 

  HTTP / CGI interface 

  SAV-triad 
  Session (resolver) 

  Application model 

  View 



Design 

  Session resolver identifies 
  Application (id) 

  Message 
  Registered, typed arguments 

  Application 
  Main application id 

  Subcomponent 
  Access path 



Design 

  View 
  Generates Web page 

  HTML / Javascript 

•  Compatibility 

•  Event handlers generated dynamically at client site 

  Document builder 
  XML document 

  Avoids syntactic errors 



Future directions 

  Regeneration of session context 
  Bookmarks 

  SOAP-compatible message protocol 

  Applets 

  True XML documents 
  XSL 



References 

  Argo framework 
  http://users.pandora.be/michel.tilman/Publications/Wiley/Af1179.doc 

  http://users.pandora.be/michel.tilman/Publications/Wiley/figures.zip 

  Dynamic object models 

  http://st-www.cs.uiuc.edu/users/johnson/DOM.html 

  http://users.pandora.be/michel.tilman/Publications/PLoP2000.pdf 


