
COAST
An Open Source Smalltalk Framework

to Build Synchronous Collaborative Applications

Jan Schümmer, Till Schümmer, Christian Schuckmann

GMD - IPSI, Darmstadt, Germany
intelligent views, Darmstadt, Germany

{jan.schuemmer|till.schuemmer}@gmd.de
christian.schuckmann@i-views.de

focus

Support the development of

• object oriented,
• synchronous,
•  interactive, and
• complex

(e.g. hypermedia applications)

groupware.
motivation
requirements
application

structure
groupware

model
realization
usage

experiences

sample groupware application

collaborative UML editor

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

problem statement

Writing groupware is difficult.

It is different from single-user
application development.

•  more than one user at a time (multiple I/O)
•  provision of group awareness
•  support of different collaboration modes

It is error prone.
•  process synchronization
•  data consistency
•  network (components) failure

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

support groupware developers

architecture
•  reference architecture
•  ready-to-use components

•  e.g. server component

model
• class hierarchy serves as a template

for groupware applications

implementation
• do and hide as much of the ‘hard and

dirty work‘ as possible
•  e.g. synchronisation of shared objects

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

requirements

groupware-specific requirements
• group awareness
• coupling control
• session management
•  floor control

general requirements
• ease of use => right level of

abstraction
• consistency, uniform approach
•  reusability

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

structure in single-user applications 1

divide functionality

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

structure in single-user applications 2

increase reusability

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

View Controller

Model
ApplicationModel

or
ValueModel

DomainModel

application logic

domain or
business logic

from single-user to multi-user:
sharing the domain model

+  synchronized domain model
+  view/controller and
 application model can
 remain unchanged
-  system is not collaboration
 aware

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

from single-user to multi-user:
sharing the application model

+  application state can be
 accessed from each
 application instance

+  application state consistent
 with domain model state

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

from single-user to multi-user:
the user comes into play

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

logical session management

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

provision of group awareness

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

coupling control

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

system architecture

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

COAST class hierarchy

shared data management

shared objects are
bundled in clusters

COAST mediators
serve clusters to
COAST clients

COAST
Client

COAST
Client

COAST
Mediator

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

transactions

shared objects are modified in transactions
• prevent inconsistencies
• short transactions
• optimistic or pessimistic
• ACID properties

transaction processing
•  local execution
•  local commit
• send agenda to mediator
• global commit / reject
• broadcast changes to synchronize replica

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

view updating

virtual slots
• cache computation results
• computation

•  on demand (lazy)
•  on invalidation (eager)

• automatic invalidation
• dependencies between model and

virtual slots are detected by the
framework

views have virtual slots that trigger
redisplay

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

virtual slots: computation

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

name
position

aClassModel

selected
...

aClassAppModel

domainModel

composeDisplayOn: aGraphicsContext
aGraphicsContext paint: ColorValue gray.
aGraphicsContext displayRectangle: self bounds.
...

computeNameText
| nameStr |
nameStr := self model domainModel name.
^ ComposedText withText: nameStr asText allBold

computeBounds
 | boundingRect |
 boundingRect := self nameText bounds.
 ^boundingRect translatedBy: self model domainModel position

key

dependency

method call

view updating

constraint mechanism ensures display
consistency

display updating integrated into
transaction scheme

•  invalidation phase: accumulate display
damage

• updating phase: repair display damage
motivation
requirements
application

structure
groupware

model
realization
usage

experiences

view updating: change notification

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

name
position

aClassModel

selected
...

aClassAppModel

domainModel
key

dependency

invalidation 100@50

self invalidateRectangle: boundsForInvalidation

applications - learning

VITAL
CROCODILE

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

applications - process modelling

CHIPS

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

applications - roomware

Beach

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

applications - games

Co-operative Puzzle

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

... and the UML-Editor

applications - software dev.

TUKAN

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

usage experiences 1

performance
• COAST-applications are as fast as

comparable single user applications

size of the shared object space
• up to now, a maximum of 30.000 was

reached

number of users
• VITAL was tested with up to 12

simulanousley working users

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

usage experiences 2

network connection
•  low bandwidth for synchronisation of replica
•  initial effort for replication
• VITAL tested via 28.800 Bps modem

connection
• UML-editor tested between Germany and

Argentina

development effort for COAST applications
•  learning effort for newbys
• experienced developers

•  one week for first version of UML editor
•  one weekend for the collaborative puzzle

motivation
requirements
application

structure
groupware

model
realization
usage

experiences

further info & download

www.openCoast.org

