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focus 

Support the development of 

• object oriented, 
• synchronous, 
•  interactive, and 
• complex 

(e.g. hypermedia applications) 

groupware. 
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sample groupware application 

collaborative UML editor 
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problem statement 

Writing groupware is difficult. 

It is different from single-user 
application development. 

•  more than one user at a time (multiple I/O) 
•  provision of group awareness 
•  support of different collaboration modes 

It is error prone. 
•  process synchronization 
•  data consistency 
•  network (components) failure 
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support groupware developers 

architecture 
•  reference architecture 
•  ready-to-use components 

•  e.g. server component 

model 
• class hierarchy serves as a template 

for groupware applications 

implementation 
• do and hide as much of the ‘hard and 

dirty work‘ as possible  
•  e.g. synchronisation of shared objects 
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requirements 

groupware-specific requirements 
• group awareness 
• coupling control 
• session management 
•  floor control 

general requirements 
• ease of use => right level of 

abstraction 
• consistency, uniform approach 
•  reusability 
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structure in single-user applications 1 

divide functionality 
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structure in single-user applications 2 

increase reusability 

motivation 
requirements 
application 

structure 
groupware 

model 
realization 
usage 

experiences 

View Controller 

Model 
ApplicationModel 

or 
ValueModel 

DomainModel 

application logic 

domain or 
business logic 



from single-user to multi-user: 
sharing the domain model 

+  synchronized domain model 
+  view/controller and 
   application model can 
   remain unchanged 
-   system is not collaboration 
   aware 
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from single-user to multi-user: 
sharing the application model 

+  application state can be  
   accessed from each 
   application instance 

+  application state consistent 
   with domain model state 
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from single-user to multi-user: 
the user comes into play 
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logical session management 
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provision of group awareness 
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coupling control 
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system architecture 
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COAST class hierarchy 



shared data management 

shared objects are 
bundled in clusters 

COAST mediators 
serve clusters to 
COAST clients 

COAST 
Client 

COAST 
Client 

COAST 
Mediator 
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transactions 

shared objects are modified in transactions 
• prevent inconsistencies 
• short transactions 
• optimistic or pessimistic 
• ACID properties 

transaction processing 
•  local execution 
•  local commit 
• send agenda to mediator 
• global commit / reject 
• broadcast changes to synchronize replica
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view updating 

virtual slots 
• cache computation results 
• computation 

•  on demand (lazy) 
•  on invalidation (eager) 

• automatic invalidation 
• dependencies between model and 

virtual slots are detected by the 
framework  

views have virtual slots that trigger 
redisplay 
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virtual slots: computation 
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name 
position 

aClassModel 

selected 
... 

aClassAppModel 

domainModel 

composeDisplayOn: aGraphicsContext 
aGraphicsContext paint: ColorValue gray. 
aGraphicsContext displayRectangle: self bounds. 
... 

computeNameText 
| nameStr | 
nameStr := self model domainModel name. 
^ ComposedText withText: nameStr asText allBold 

computeBounds 
    | boundingRect | 
    boundingRect := self nameText bounds. 
    ^boundingRect translatedBy: self model domainModel position 

key 

dependency 

method call 



view updating 

constraint mechanism ensures display 
consistency 

display updating integrated into 
transaction scheme 

•  invalidation phase: accumulate display 
damage 

• updating phase: repair display damage 
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view updating: change notification 
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name 
position 

aClassModel 

selected 
... 

aClassAppModel 

domainModel 
key 

dependency 

invalidation 100@50 

self invalidateRectangle: boundsForInvalidation 



applications - learning 

VITAL 
CROCODILE  
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applications - process modelling 

CHIPS 
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applications - roomware 

Beach 
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applications - games 

Co-operative Puzzle 
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... and the UML-Editor 

applications - software dev.  

TUKAN 
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usage experiences 1 

performance 
• COAST-applications are as fast as 

comparable single user applications 

size of the shared object space 
• up to now, a maximum of 30.000 was 

reached 

number of users 
• VITAL was tested with up to 12 

simulanousley working users 
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usage experiences 2 

network connection 
•  low bandwidth for synchronisation of replica 
•  initial effort for replication 
• VITAL tested via 28.800 Bps modem 

connection 
• UML-editor tested between Germany and 

Argentina 

development effort for COAST applications 
•  learning effort for newbys 
• experienced developers 

•  one week for first version of UML editor 
•  one weekend for the collaborative puzzle 
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further info & download 

www.openCoast.org 


