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 Besides integers, Smalltalk supports two 
numerical types 
– Fractions 
– Floating point numbers 
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 Results of products and sums are exact. 
 Cannot be used with transcendental functions. 
 Computation is slow. 
 Computation may exceed computer’s memory. 
 Convenient way to represent currency values 

when combined with rounding. 
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 Computation is fast. 
 Results have limited precision  

(usually 54 bits, ~16 decimal digits). 
 Products preserve relative precision. 
 Sums may keep only wrong digits. 
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 Sums may keep only wrong digits. 
Example: 
– Evaluate 

2.718 281 828 459 05 - 2.718 281 828 459 04  
– … =  9.76996261670138 x 10-15  
– Should have been 10-14 ! 
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 Beware of meaningless precision! 
–  In 1424, Jamshid Masud al-Kashi published  
π = 3.141 592 653 589 793 25… 

– …but noted that the error in computing the 
perimeter of a circle with a radius 600’000 
times that of earth would be less than the 
thickness of a horse’s hair. 
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  Donald E. Knuth : 
– Floating point arithmetic is by nature inexact, and it is 

not difficult to misuse it so that the computed answers 
consist almost entirely of  “noise”. One of  the principal 
problems of  numerical analysis is to determine how 
accurate the results of  certain numerical methods will be.  



©DB Consulting, 1999, all rights reserved 

 Never use equality between two floating 
point numbers. 

 Use a special method to compare them. 
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 Proposed extensions to class Number 
relativelyEqualsTo: aNumber upTo: aSmallNumber 
 | norm | 
 norm := self abs max: aNumber abs. 
 ^norm <= aSmallNumber 
  or: [ (self - aNumber) abs < 

( aSmallNumber * norm)] 
  
equalsTo: aNumber 
 ^self relativelyEqualsTo: aNumber upTo: 

DhbFloatingPointMachine default 
defaultNumericalPrecision 
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 Find a result using successive 
approximations 

 Easy to implement as a  framework 
 Wide field of application 
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Begin 

Compute or choose 
initial object 

Compute 
next object 

Object 
sufficient? 

Yes 

End 

No 
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NewtonZeroFinder 

TrapezeIntegrator 

SimpsonIntegrator 

RombergIntegrator 

EigenValues 

MaximumLikelihoodFit 

LeastSquareFit 

GeneticAlgorithm 

SimplexAlgorithm 

HillClimbing 

IterativeProcess 

FunctionalIterator 

ClusterAnalyzer 

InfiniteSeries 

ContinuedFraction 



©DB Consulting, 1999, all rights reserved 

Begin 

iterations := 0 

Yes 

Perform clean-up 

Compute 
next object 

iterations :=  
 iterations  + 1 

No 

iterations < 
maximumIterations 

Compute or choose 
initial object 

End 
No 

Yes 

precision < 
desiredPrecision 
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evaluate 

finalizeIteration 

hasConverged 

evaluateIteration 

initializeIteration Compute or choose 
initial object 

Yes 

No 

Compute 
next object 

iterations := 0 

iterations :=  
 iterations  + 1 

iterations < 
maximumIterations 

Perform clean-up 

Begin 

End 
No 

Yes 

precision < 
desiredPrecision 
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| iterativeProcess result | 
iterativeProcess := <a subclass of 

IterativeProcess> new. 
result := iterativeProcess evaluate. 
iterativeProcess hasConverged 
 ifFalse:[ <special case processing>]. 
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| iterativeProcess result precision | 
iterativeProcess := <a subclass of DhbIterativeProcess> new. 
iterativeProcess desiredPrecision: 1.0e-6; 

maximumIterations: 25. 
result := iterativeProcess evaluate. 
iterativeProcess hasConverged 
 ifTrue: [ Transcript nextPutAll: ‘Result obtained 

after ‘. 
  iterativeProcess iteration printOn: Transcript. 
  Transcript nextPutAll: ‘iterations. Attained 

precision is ‘. 
  iterativeProcess precision printOn: Transcript. 
  ] 
 ifFalse:[ Transcript nextPutAll: ‘Process did not 

converge’]. 
Transcript cr. 
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IterativeProcess 

evaluate 
initializeIteration 
hasConverged 
evaluateIteration 
finalizeIteration 
precisionOf:relativeTo: 
desiredPrecision (g,s) 
maximumIterations (g,s) 
precision (g) 
iterations (g) 
result (g) 
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precisionOf: aNumber1 relativeTo: aNumber2 
 ^aNumber2 > DhbFloatingPointMachine 

default 
defaultNumericalPrecision 

  ifTrue: [ aNumber1 / aNumber2] 
  ifFalse:[ aNumber1] 

 Computation of precision should be 
made relative to the result 

 General method: 
Result Absolute precision 
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| iterativeProcess result | 
iterativeProcess := <a subclass of 

FunctionalIterator> function: 
( DhbPolynomial new: #(1 2 3). 

result := iterativeProcess evaluate. 
iterativeProcess hasConverged 
 ifFalse:[ <special case processing>]. 
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initializeIteration 
computeInitialValues  
relativePrecision 
setFunction: 
functionBlock (s) 

FunctionalIterator 

IterativeProcess 

value: 

AbstractFunction 



©DB Consulting, 1999, all rights reserved 

 Dealing with numerical data 
 Framework for iterative processes 
 Newton’s zero finding 
 Eigenvalues and eigenvectors 
 Cluster analysis 
 Conclusion 



©DB Consulting, 1999, all rights reserved 

 It finds a value x such that f(x) = 0. 
 More generally, it can be used to find a 

value x such that f(x) = c. 
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 Use successive approximation formula 
xn+1 = xn – f(xn)/f’(xn) 

 Must supply an initial value 
– overload computeInitialValues 

 Should protect against f ’(xn) = 0 
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x1 

x2 

x3 

f(x) 

y = f(x1) + f’(x1)·(x- x1) 
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| zeroFinder result | 
zeroFinder:= DhbNewtonZeroFinder 

function: [ :x | x 
errorFunction - 0.9] 

derivative: [ :x | x normal]. 
zeroFinder initialValue: 1. 
result := zeroFinder evaluate. 
zeroFinder hasConverged 
 ifFalse:[ <special case processing>]. 
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evaluateIteration 
computeInitialValues  (o) 
defaultDerivativeBlock  
initialValue: 
setFunction: (o) 

NewtonZeroFinder 

IterativeProcess 

FunctionalIterator 

value: 

AbstractFunction 
derivativeBlock (s) 
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x1 

x2 

Effect of a nearly 0 derivative during iterations 

x3 
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 Finds the solution to the problem 
 M·v = λ·v 
where M is a square matrix  
and v a non-zero vector. 

 λ is the eigenvalue.  
 v is the eigenvector. 
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 Example of uses: 
– Structural analysis (vibrations). 
– Correlation analysis 

(statistical analysis and data mining). 
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 We use the Jacobi method applicable to 
symmetric matrices only. 

 A 2x2 rotation matrix is applied on the 
matrix to annihilate the largest off-diagonal 
element. 

 This process is repeated until all off-
diagonal elements are negligible. 
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 When M is a symmetric matrix, there exist 
an orthogonal matrix O such that: 
  OT·M·O is diagonal. 

 The diagonal elements are the eigenvalues. 
 The columns of the matrix O are the 

eigenvectors of the matrix M. 
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 Let i and j be the indices of the largest off-
diagonal element. 

 The rotation matrix R1 is chosen such that 
(R1

T·M·R1)ij  is 0. 
 The matrix at the next step is: 

 M2 = R1
T·M·R1. 
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 The process is repeated on the matrix M2. 
 One can prove that, at each step, one has: 

 max |(Mn )ij | <= max |(Mn-1)ij | for all i≠j. 
 Thus, the algorithm must converge. 
 The matrix O is then the product of all 

matrices Rn. 
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 The precision is the absolute value of the 
largest off-diagonal element. 

 To finalize, eigenvalues are sorted in 
decreasing order of absolute values. 

 There are two results from this algorithm: 
– A vector containing the eigenvalues, 
– The matrix O containing the corresponding 

eigenvectors. 
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| matrix jacobi eigenvalues transform | 
matrix := DhbMatrix rows: #( ( 3 -2 0) 

(-2 7 1) (0 1 5)). 
jacobi := DhbJacobiTransformation new: 

matrix. 
jacobi evaluate. 
iterativeProcess hasConverged 
 ifTrue:[ eigenvalues := jacobi result. 
         transform := jacobi transform. 
        ] 
 ifFalse:[ <special case processing>]. 
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evaluateIteration 
largestOffDiagonalIndices 
transformAt:and: 
finalizeIteration 
sortEigenValues 
exchangeAt: 
printOn: 

JacobiTransformation 

IterativeProcess 

lowerRows (i) 
transform (g) 
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 Is one of the techniques of data mining. 
 Allows to extract unsuspected similarity 

patterns from a large collection of objects. 
 Used by marketing strategists (banks). 
 Example: BT used cluster analysis to locate 

a long distance phone scam. 
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 Each object is represented by a vector of 
numerical values. 

 A metric is defined to compute a similarity 
factor using the vector representing the 
object. 
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 At first the centers of each clusters are 
defined by picking random objects. 

 Objects are clustered to the nearest center. 
 A new center is computed for each cluster. 
 Continue iteration until all objects remain in 

the cluster of the preceding iteration. 
 Empty clusters are discarded. 
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 The similarity metric is essential to the 
performance of cluster analysis. 

 Depending on the problem, a different 
metric may be used. 

 Thus, the metric is implemented with a 
STRATEGY pattern. 
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 The precision is the number of objects that 
changed clusters at each iteration. 

 The result is a grouping of the initial 
objects, that is a set of clusters. 

 Some clusters may be better than others. 
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| server finder | 
server := <a subclass of DhbAbstractClusterDataServer > 

new. 
finder := DhbClusterFinder new: 15 

server: server 
type: DhbEuclidianMetric. 

finder evaluate. 
finder tally 
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evaluateIteration 
accumulate: 
indexOfNearestCluster: 
initializeIteration 
finalizeIteration 

ClusterFinder 

IterativeProcess 

dataServer (i) 
clusters (i,g) 

accumulate: 
distance: 
isEmpty: 
reset 

Cluster 

openDataStream 
closeDataStream 
dimension 
seedClusterIn: 
accumulateDataIn: 

ClusterDataServer 

accumulator (i) 
metric (i) 
count (g) 
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 When used with care numerical data can be 
processed with Smalltalk. 

 OO programming can take advantage of the 
mathematical structure. 

 Programming numerical algorithms can take 
advantage of OO programming. 
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To reach me: didier@ieee.org 


