
21. August 09

ESUG, Gent 1999

©DB Consulting, 1999, all rights reserved

 Dealing with numerical data
 Framework for iterative processes
 Newton’s zero finding
 Eigenvalues and eigenvectors
 Cluster analysis
 Conclusion

©DB Consulting, 1999, all rights reserved

 Dealing with numerical data
 Framework for iterative processes
 Newton’s zero finding
 Eigenvalues and eigenvectors
 Cluster analysis
 Conclusion

©DB Consulting, 1999, all rights reserved

 Besides integers, Smalltalk supports two
numerical types
– Fractions
– Floating point numbers

©DB Consulting, 1999, all rights reserved

 Results of products and sums are exact.
 Cannot be used with transcendental functions.
 Computation is slow.
 Computation may exceed computer’s memory.
 Convenient way to represent currency values

when combined with rounding.

©DB Consulting, 1999, all rights reserved

 Computation is fast.
 Results have limited precision

(usually 54 bits, ~16 decimal digits).
 Products preserve relative precision.
 Sums may keep only wrong digits.

©DB Consulting, 1999, all rights reserved

 Sums may keep only wrong digits.
Example:
– Evaluate

2.718 281 828 459 05 - 2.718 281 828 459 04
– … = 9.76996261670138 x 10-15
– Should have been 10-14 !

©DB Consulting, 1999, all rights reserved

 Beware of meaningless precision!
–  In 1424, Jamshid Masud al-Kashi published
π = 3.141 592 653 589 793 25…

– …but noted that the error in computing the
perimeter of a circle with a radius 600’000
times that of earth would be less than the
thickness of a horse’s hair.

©DB Consulting, 1999, all rights reserved

  Donald E. Knuth :
– Floating point arithmetic is by nature inexact, and it is

not difficult to misuse it so that the computed answers
consist almost entirely of “noise”. One of the principal
problems of numerical analysis is to determine how
accurate the results of certain numerical methods will be.

©DB Consulting, 1999, all rights reserved

 Never use equality between two floating
point numbers.

 Use a special method to compare them.

©DB Consulting, 1999, all rights reserved

 Proposed extensions to class Number
relativelyEqualsTo: aNumber upTo: aSmallNumber
 | norm |
 norm := self abs max: aNumber abs.
 ^norm <= aSmallNumber
 or: [(self - aNumber) abs <

(aSmallNumber * norm)]

equalsTo: aNumber
 ^self relativelyEqualsTo: aNumber upTo:

DhbFloatingPointMachine default
defaultNumericalPrecision

©DB Consulting, 1999, all rights reserved

 Dealing with numerical data
 Framework for iterative processes
 Newton’s zero finding
 Eigenvalues and eigenvectors
 Cluster analysis
 Conclusion

©DB Consulting, 1999, all rights reserved

 Find a result using successive
approximations

 Easy to implement as a framework
 Wide field of application

©DB Consulting, 1999, all rights reserved

Begin

Compute or choose
initial object

Compute
next object

Object
sufficient?

Yes

End

No

©DB Consulting, 1999, all rights reserved

NewtonZeroFinder

TrapezeIntegrator

SimpsonIntegrator

RombergIntegrator

EigenValues

MaximumLikelihoodFit

LeastSquareFit

GeneticAlgorithm

SimplexAlgorithm

HillClimbing

IterativeProcess

FunctionalIterator

ClusterAnalyzer

InfiniteSeries

ContinuedFraction

©DB Consulting, 1999, all rights reserved

Begin

iterations := 0

Yes

Perform clean-up

Compute
next object

iterations :=
 iterations + 1

No

iterations <
maximumIterations

Compute or choose
initial object

End
No

Yes

precision <
desiredPrecision

©DB Consulting, 1999, all rights reserved

evaluate

finalizeIteration

hasConverged

evaluateIteration

initializeIteration Compute or choose
initial object

Yes

No

Compute
next object

iterations := 0

iterations :=
 iterations + 1

iterations <
maximumIterations

Perform clean-up

Begin

End
No

Yes

precision <
desiredPrecision

©DB Consulting, 1999, all rights reserved

| iterativeProcess result |
iterativeProcess := <a subclass of

IterativeProcess> new.
result := iterativeProcess evaluate.
iterativeProcess hasConverged
 ifFalse:[<special case processing>].

©DB Consulting, 1999, all rights reserved

| iterativeProcess result precision |
iterativeProcess := <a subclass of DhbIterativeProcess> new.
iterativeProcess desiredPrecision: 1.0e-6;

maximumIterations: 25.
result := iterativeProcess evaluate.
iterativeProcess hasConverged
 ifTrue: [Transcript nextPutAll: ‘Result obtained

after ‘.
 iterativeProcess iteration printOn: Transcript.
 Transcript nextPutAll: ‘iterations. Attained

precision is ‘.
 iterativeProcess precision printOn: Transcript.
]
 ifFalse:[Transcript nextPutAll: ‘Process did not

converge’].
Transcript cr.

©DB Consulting, 1999, all rights reserved

IterativeProcess

evaluate
initializeIteration
hasConverged
evaluateIteration
finalizeIteration
precisionOf:relativeTo:
desiredPrecision (g,s)
maximumIterations (g,s)
precision (g)
iterations (g)
result (g)

©DB Consulting, 1999, all rights reserved

precisionOf: aNumber1 relativeTo: aNumber2
 ^aNumber2 > DhbFloatingPointMachine

default
defaultNumericalPrecision

 ifTrue: [aNumber1 / aNumber2]
 ifFalse:[aNumber1]

 Computation of precision should be
made relative to the result

 General method:
Result Absolute precision

©DB Consulting, 1999, all rights reserved

| iterativeProcess result |
iterativeProcess := <a subclass of

FunctionalIterator> function:
(DhbPolynomial new: #(1 2 3).

result := iterativeProcess evaluate.
iterativeProcess hasConverged
 ifFalse:[<special case processing>].

©DB Consulting, 1999, all rights reserved

initializeIteration
computeInitialValues
relativePrecision
setFunction:
functionBlock (s)

FunctionalIterator

IterativeProcess

value:

AbstractFunction

©DB Consulting, 1999, all rights reserved

 Dealing with numerical data
 Framework for iterative processes
 Newton’s zero finding
 Eigenvalues and eigenvectors
 Cluster analysis
 Conclusion

©DB Consulting, 1999, all rights reserved

 It finds a value x such that f(x) = 0.
 More generally, it can be used to find a

value x such that f(x) = c.

©DB Consulting, 1999, all rights reserved

 Use successive approximation formula
xn+1 = xn – f(xn)/f’(xn)

 Must supply an initial value
– overload computeInitialValues

 Should protect against f ’(xn) = 0

©DB Consulting, 1999, all rights reserved

x1

x2

x3

f(x)

y = f(x1) + f’(x1)·(x- x1)

©DB Consulting, 1999, all rights reserved

| zeroFinder result |
zeroFinder:= DhbNewtonZeroFinder

function: [:x | x
errorFunction - 0.9]

derivative: [:x | x normal].
zeroFinder initialValue: 1.
result := zeroFinder evaluate.
zeroFinder hasConverged
 ifFalse:[<special case processing>].

©DB Consulting, 1999, all rights reserved

evaluateIteration
computeInitialValues (o)
defaultDerivativeBlock
initialValue:
setFunction: (o)

NewtonZeroFinder

IterativeProcess

FunctionalIterator

value:

AbstractFunction
derivativeBlock (s)

©DB Consulting, 1999, all rights reserved

x1

x2

Effect of a nearly 0 derivative during iterations

x3

©DB Consulting, 1999, all rights reserved

 Dealing with numerical data
 Framework for iterative processes
 Newton’s zero finding
 Eigenvalues and eigenvectors
 Cluster analysis
 Conclusion

©DB Consulting, 1999, all rights reserved

 Finds the solution to the problem
 M·v = λ·v
where M is a square matrix
and v a non-zero vector.

 λ is the eigenvalue.
 v is the eigenvector.

©DB Consulting, 1999, all rights reserved

 Example of uses:
– Structural analysis (vibrations).
– Correlation analysis

(statistical analysis and data mining).

©DB Consulting, 1999, all rights reserved

 We use the Jacobi method applicable to
symmetric matrices only.

 A 2x2 rotation matrix is applied on the
matrix to annihilate the largest off-diagonal
element.

 This process is repeated until all off-
diagonal elements are negligible.

©DB Consulting, 1999, all rights reserved

 When M is a symmetric matrix, there exist
an orthogonal matrix O such that:
 OT·M·O is diagonal.

 The diagonal elements are the eigenvalues.
 The columns of the matrix O are the

eigenvectors of the matrix M.

©DB Consulting, 1999, all rights reserved

 Let i and j be the indices of the largest off-
diagonal element.

 The rotation matrix R1 is chosen such that
(R1

T·M·R1)ij is 0.
 The matrix at the next step is:

 M2 = R1
T·M·R1.

©DB Consulting, 1999, all rights reserved

 The process is repeated on the matrix M2.
 One can prove that, at each step, one has:

 max |(Mn)ij | <= max |(Mn-1)ij | for all i≠j.
 Thus, the algorithm must converge.
 The matrix O is then the product of all

matrices Rn.

©DB Consulting, 1999, all rights reserved

 The precision is the absolute value of the
largest off-diagonal element.

 To finalize, eigenvalues are sorted in
decreasing order of absolute values.

 There are two results from this algorithm:
– A vector containing the eigenvalues,
– The matrix O containing the corresponding

eigenvectors.

©DB Consulting, 1999, all rights reserved

| matrix jacobi eigenvalues transform |
matrix := DhbMatrix rows: #((3 -2 0)

(-2 7 1) (0 1 5)).
jacobi := DhbJacobiTransformation new:

matrix.
jacobi evaluate.
iterativeProcess hasConverged
 ifTrue:[eigenvalues := jacobi result.
 transform := jacobi transform.
]
 ifFalse:[<special case processing>].

©DB Consulting, 1999, all rights reserved

evaluateIteration
largestOffDiagonalIndices
transformAt:and:
finalizeIteration
sortEigenValues
exchangeAt:
printOn:

JacobiTransformation

IterativeProcess

lowerRows (i)
transform (g)

©DB Consulting, 1999, all rights reserved

 Dealing with numerical data
 Framework for iterative processes
 Newton’s zero finding
 Eigenvalues and eigenvectors
 Cluster analysis
 Conclusion

©DB Consulting, 1999, all rights reserved

 Is one of the techniques of data mining.
 Allows to extract unsuspected similarity

patterns from a large collection of objects.
 Used by marketing strategists (banks).
 Example: BT used cluster analysis to locate

a long distance phone scam.

©DB Consulting, 1999, all rights reserved

 Each object is represented by a vector of
numerical values.

 A metric is defined to compute a similarity
factor using the vector representing the
object.

©DB Consulting, 1999, all rights reserved

 At first the centers of each clusters are
defined by picking random objects.

 Objects are clustered to the nearest center.
 A new center is computed for each cluster.
 Continue iteration until all objects remain in

the cluster of the preceding iteration.
 Empty clusters are discarded.

©DB Consulting, 1999, all rights reserved

 The similarity metric is essential to the
performance of cluster analysis.

 Depending on the problem, a different
metric may be used.

 Thus, the metric is implemented with a
STRATEGY pattern.

©DB Consulting, 1999, all rights reserved

 The precision is the number of objects that
changed clusters at each iteration.

 The result is a grouping of the initial
objects, that is a set of clusters.

 Some clusters may be better than others.

©DB Consulting, 1999, all rights reserved

| server finder |
server := <a subclass of DhbAbstractClusterDataServer >

new.
finder := DhbClusterFinder new: 15

server: server
type: DhbEuclidianMetric.

finder evaluate.
finder tally

©DB Consulting, 1999, all rights reserved

evaluateIteration
accumulate:
indexOfNearestCluster:
initializeIteration
finalizeIteration

ClusterFinder

IterativeProcess

dataServer (i)
clusters (i,g)

accumulate:
distance:
isEmpty:
reset

Cluster

openDataStream
closeDataStream
dimension
seedClusterIn:
accumulateDataIn:

ClusterDataServer

accumulator (i)
metric (i)
count (g)

©DB Consulting, 1999, all rights reserved

 When used with care numerical data can be
processed with Smalltalk.

 OO programming can take advantage of the
mathematical structure.

 Programming numerical algorithms can take
advantage of OO programming.

©DB Consulting, 1999, all rights reserved

?
To reach me: didier@ieee.org

