Reuse Contracts as a basisfor investigating
reusability of Smalltalk code

Tutorial Exercises

ESUG’' 97 Summer School

Koen De Hondt
Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel

kdehondt@vub.ac.be

Style conventions used in this text:
| Textinitalic: text that you read on screen

IMPORTANT The software you are about to use is a development version, but

problems are not expected.

EXERCISE 1 GETTING ACQUAINTED WITH THE BROWSER

The browser used in these exercises is a bit more sophisticated than the standard
VisualWorks browser. The goa of this exercise is to get acquainted with the browser
and to get an overview of its functionality.

Step 1 Open the exercisesimage. Y ou should see alauncher.
Press the Browse button. A menu of available browsers appears.
Select ESUG’ 97 Browser and position the window as desired (full screenis
best).

Step 2 The ESUG’ 97 browser’ s structure differs somewhat from the structure of

the standard VisuaWorks browser.

The category and class lists are placed vertically instead of horizontally. The
combination of the category list, the class list, and the instance/class switch
isknow asthe*“class selector”. What you see on the right side of the class
selector is called the “class editor” (or “class viewer” when no editing is
allowed).

S —

BlEalila]=

3 Defintion |/_,M-:~M}5 &, Hierarchy | @) Comment| 4= AC 1

AT-Tooks

AT-Support
AT -SystemAnasis

Colkections-Abstract
Collections-Amrayed

Ikarna IEnCoded SeamConsuaton siream & poskioned at ks end, o £ the posbon i out of bounds In the
InternalSiream collscion
Peekable Sream

e <primRie 65>
Readwis STeam postion »= readLimk
Sream Mrus l"f)."FG"llE"‘Jl

SreamEncocsr

i x

conlents 2

] |;eonlm
Lesting

reagFostion]

SEeam represantad Dy the receiver Fail f

s sysam s ot an Aray or 2 String Fall #ins

FRake: [“collechon ab (poskion = pasition « 1))

@ rstance O chass

K1,

The class selector isin fact a notebook, which allows the user to pick the
most appropriate view to select a class. From left to right you find:

» acategory list and aclasslist, asin the standard VisualWorks browser
» acategory menu and aclasslist

Reuse Contracts as a basis for investigating reusability of Smalltalk code

 alistinwhich classes are nested in categories
» anaphabetica classlist

o ahierarchical classlist

» aquery fieldand aclasslist

Switching from one page to another in the notebook preserves the class
selection. Note that the class selector does not have a‘Find class...’
command, since that functionality is covered by the last pagein the
notebook, i.e. the combination of aquery field and aclasslist.

Select aclass and explore the different pagesin the class selector notebook.

Step 3

The class editor is a so a notebook. Each page contains a different
editor/viewer. The class editor notebook in the ESUG’ 97 browser contains
4 familiar pages, such as Definition, Methods, Hierarchy, and Comment,
and 4 extrapages for this tutorid:

* thereuse contracts (RC) page

» the Analysis page

» the Clusters page

 the Metrics page

Select aclass and explore the 4 first pagesin the class editor notebook.

It isimpossible to create a new class by editing a new class template and
accepting it, asis the standard way in the VisualWorks browsers. Instead,
new classes are created with the New Class... command (in the menu of any
classlist) and instance variables, class variables, and pool dictionaries are
entered on the Definition page of the class editor notebook.

The ESUG’ 97 browser does not display change request dialogs when the
user makes another selection before accepting any editions. So if you edit a
class on the Definition page, or if you edit amethod on the Methods page,
or if you edit a class comment on the Comment page, make sure that you
accept the changes before switching to another page, selecting another class,
or selecting another method.

EXERCISE 2

The goa of this exercise isto examine class hierarchies based on reuse contracts.

Step 1

Select class ReadWriteStream in the class selector notebook and switch to
the RC page of the class editor notebook. A “busy” mouse pointer indicates
that reuse contracts are being extracted from the selected classand all its

Reuse Contracts as a basis for investigating reusability of Smalltalk code 3

superclasses. Thisinformation is not cached, so picking another class (or
the same class) will start the extraction process again.

The RC page consists of 3 views. The list on the left shows the result of the
extraction process: al classes in the superclass chain of the selected class,
with the extracted reuse operators between them. When a selection in this
list is made, the details of the selection are shown in the top right list view.
The extension and refinement reuse operators use the color green to indicate
what was added with respect to the superclass, while the cancellation and
coarsening reuse operators use the color red to indicate what was removed.
The bottom right view shows the body of a method selected in the top right
view.

D

Browser

EICIEIRNENE:

AT-SystemAnalysis
AT-Took
Collectiors-Aoslract
Collechors - Armayed
Collections-Sequenceadle

4 B cormment| 4= RC
|

Reuse Contracls

v
extension
Object
xlension

| £ Analysis | @ Clusters |DMetcs | &
Specialisation Interface

hi ;ma

L concrote

Collections-Streans
Colkecbors-String S upport
Collections-S upport
Collections-Text

Collechors.Linordered
Eo:o&-dsnoem
ncoded StreamConstructor
codedStream coarsening .
:gx:ggﬁ i i extension displaySiring
Peskabke Sream InternalStream
Postionable Stream cancelbion “S0eres inkerra | ream’
ReadSteam l concratizabon
<y eension
SreamEnOser WikeStream
= exlension
@® ctarce O Class o |
Step 2 Investigate the extracted information. In particular, look what happens with

the #next method in the class chain from Sreamto ReadWriteStream. This
information is used on dlides (45 — 53) of the presentation. #next is
introduced as an abstract method by the extension from Object to Stream.
PeekableStream, PositionableStream, and Internal Sream do not overrideiit,
but WriteStream removes it (see the cancellation from Internal Sreamto
WriteSream). Finally, ReadWriteStream re-introduces #next as a concrete
method (in fact a primitive).

It israther strange that an abstract method is removed from a subclass
because it is not appropriate and then re-introduced in a subclass, but keep
in mind that the Stream hierarchy should be (partly) a multiple inheritance
hierarchy. ReadWriteStream is the class that combines WriteStream and
ReadStream behavior. Such combination typically givesrise to design
problemsin a single inheritance language.

Reuse Contracts as a basis for investigating reusability of Smalltalk code

Step 3 Examinethe reuse operators for other class chains.
For example, take alook at Array, IdentityDictionary, View, and
AspectAdaptor.

EXERCISE 3

The god of thisexerciseis to analyse source code with the browser and look for code
that might hinder reuse.

Step 1 Select class View and switch to the Analysis page of the class editor
notebook. A “busy” mouse pointer indicates that analysis data are being
extracted from the selected class and all its superclasses. These dataare
cached, so picking another class (or the same class) will not start the
extraction process again. In this development version of the browser
however, the (whole) cache is invalidated when a method is accepted in an
ESUG’ 97 browser.

Step 2 Thetop of the Analysis page displays several check boxes. Each check box
corresponds to an annotation shown after the instance variables and methods
in the views below. The check boxes allow to selectively show analysis
information in these views. Press the Update! button to apply changes to the
state of the check boxes.

O Drowser 5] =)
E|E|:.| $ | Q| ¥ 4 Fwetrocs | &, Heearchy BC':mc-r(M-r«: |pAmms »
UBaske Daases o B oHFes BYped- [
UBasics- Nolebook | ey W St Wi
mmw: M supersends W zuper<a gl bad-zupersends
UBuiger-Specficalions B sel-does _ W se-argument
UBuider-Support _
31'&0::%"::,.1 upctats | ineert | allon | alcer |
UL ooks-Mac -
UL ooks Mote { g K6 K ypes: {Semallintagernt best e [Smas
FrchedBiordn |
putFeid Cormposed Text
togi;:umocw.a
LAk
MenuBarWrapper
Massage Channed
Rangeviap -
He ComposingComposite
Aeversingwiagpsr
@ ismane Qchss / ———— m
A o

Annotations

The view below the check boxes lists the instance variables of the selected
class. For now, typing information (typed-1V) is the only information

Reuse Contracts as a basis for investigating reusability of Smalltalk code 5

extracted from the source code. The required interface isthe set of messages
that is sent to the instance variable. The assigned types are the classes of
which instances are assigned to the instance variable. When the required
interface and the assigned types contains enough information, a best type
can be derived. It isthe class that best matches the extracted information.

The view below the instance variables lists the methods defined by the
selected class. The bottom view displays the body of the sel ected method.

Although many more useful annotations can be imagined, for now the
following method annotations are extracted from the source code:

self-sends: the set of messages sent by the method through self sends (i.e.
the specialisation clause). For primitive methods this set is empty, even if
the method contains primitive failure code.

primitive: this annotation is present if the method is a primitive method.

factory: this annotation is present if the method is afactory method, i.e. a
method that does nothing but returning a class (thisis the implementation in
Smalltalk of the “factory method” design pattern).

accessor/mutator:a method is annotated with accessor or mutator when
the method is an accessor or mutator method respectively.

abstract: this annotation is present when the method is an abstract method.

template: this annotation is present when the method is a template method,
i.e. amethod that invokes at |east one abstract method through a self send.

super-sends: the set of messages sent by the method through super sends.

super-does-not-understand: this annotation indicates that the listed
messages are not implemented in any of the superclasses of the method's
class. This annotation reflects a bug.

just-super-send: this annotation indicates that the method contains only a
super send. This method can be safely removed without affecting the
behavior of the class.

bad-super-send: this annotation indicates that the method invokes a
method with a different name through a super send. Bad super sends are a
classic example of bad coding style that inhibits reuse. Often a developer is
compelled to use bad super sends, because the method in the superclassis
not written with reuse in mind. Factorization of the method in the superclass
into smaller methods would solve many problems, since the developer can
override in amore fine-grained way.

multiple-sends: this annotation lists the messages that are invoked
repeatedly. This might, or might not, be a problem. It isinteresting to have
thisinformation for performance reasons, for instance when time
consuming methods are invoked several times.

self-does-not-understand: this annotation indicates that the listed
messages (invoked through self sends) are not part of the interface of the
method’ s class. This annotation reflects a bug.

called-by: this annotation lists the methods that call this method (i.e. the
senders of a method within the class).

Reuse Contracts as a basis for investigating reusability of Smalltalk code

self-argument: this annotation lists the methods that send messages with
self as argument. Such message sends indicate possible collaborations of the
method’ s class and the classes of the invoked methods. When you want to
override amethod that passes the receiver as an argument, have alook at the
method that receives the receiver as an argument, because it could send
messages back to that receiver. Maybe you have to adapt more than this
method in order to get the desired result.

Each type of annotation has a different color, so that annotations of the same
type are spotted easily. The red annotations concern bugs, bad coding style,
and reuse inhibitors. The other colors have no special meaning.

Step 3 Havealook at the annotations of the following methods and think about
how you would eiminate the problem:
Class Method
TwoByteString sizelnBytes
Symbol stringHash
UninterpretedBytes sizelnBytes
MacFilename moveTo:
EXERCISE 4

The god of this exerciseisto explore the clustering view of the browser. Note that this
view is highly experimental.

A clugter is a set of methods that invoke each other within a class. Clusters give an
indication of which methods belong together, or which methods are concerned with a
certain aspect of the class in which the methods reside. For now, only one type of
clustering is supported. Other ways of clustering are under investigation.

Step 1

Select class Dictionary and switch to the Clusters page of the class editor
notebook.

The Clusters page roughly consists of two views. Thetop view lists all
clusters that could be found in the selected class. When acluster is selected,
the bottom view displays the details of the selected cluster, according to the
state of the pop-up menu and the current layer (on which no details are given
here).

When a cluster contains enough methods (currently more than 5), the cluster
can be viewed as adivided cluster. The cluster isthen divided into one, two,
or three parts. The division is based on the number of invocations of the
methodsin the cluster. The called most part lists the methods that are
invoked in more than 35% of al method invocationsin the cluster. The

Reuse Contracts as a basis for investigating reusability of Smalltalk code 7

peripherals part lists al methods that are not invoked from within the cluster
(and thus not from within the class). The called less part lists al methodsin
the cluster that are not in the two other parts.

3 Browser 71}
B Elal i al+ 4 @) Comment| 4= AC | £ Analzz | B Clustors | EMetrics »
L
Mlmms"m 21 peadGeneral SrucharsOn Mindiey TASoriNa be Minde Cril g ﬁj
g':'-“lmm'g?"’? S gt 1| G0, chuces., vakms, coect, oocurencess
ollections. Support remone tAbGant
Colkctions-Teat vaceWakFrom, bingingsDo, changeCapacityTo, 4 . PO, s !
v
Oomymm T \ .
Computed Calegones
[Daabase-intertace how cluster -
Daabase-Support - - USING: Divided Clusters Laysr I
Databage-Took
Drag-And-Crop = -
v o P aled most (NndKeyOrNE)
Ea Al bess
) 1290 ket otFoundEmer associationat um-m:.;¢arurf~
Kriiy Dxbonary tAbsert create¥ ey vahe. includeskey fuC
g”mjsﬂ PR heas
Wéa‘-m:bcmry n pckAdd at at tAbsentPut AndKey e
) OIS Nove ey banding R readGenanalS
@lmhmo OCL{

Peripheral methods

The methods in the called most part are called “core methods’, while the
methods in the peripheral part are called “peripheral methods’. This
categorization gives interesting information to subclassers. When acore
method is overridden in a subclass, the developer can expect that this action
will have an effect on the methods that invoke that method. The developer
can read the affected methods from the cluster. Typically, these core
methods are private methods and will not be invoked from outside the class.
Peripheral methods, on the other hand, are invoked from outside the class.
Thus overriding a peripheral method has no effect on the class itself, but on
the clients of the subclass. Therefore clustering information is crucial for
devel opers who want to override peripheral methods.

In the figure above, thereis a cluster concerning finding keys. The
#indKeyOrNil: method is a core method and seemsto play an important
rolein many other methods. It is clear that overriding this method in a
subclass of Dictionary should be done with special care.

Step 2 Examine clustersfor other classes.
For example, take alook at Collection (cluster for enumeration), Stream
(cluster for putting objects on a stream), Object (cluster for the dependency
mechanism), and Visual Component (cluster for bounds).

8 Reuse Contracts as a basis for investigating reusability of Smalltalk code

EXERCISE 5

The goa of this exercise is to explore the metrics view of the browser. This view
shows metrics data for the selected class. As the clusters page, the metrics view is ill
in an experimental phase. Although we believe that the numbers shown in this view are
of limited use, we have added this view anyway.

Detailed information about the meaning of the numbers can be found in:

» Brian Henderson-Selllers, “ Object-Oriented Metrics, Measures of Complexity”.
Prentice Hall

» Shyam R. Chidamber and Chris F. Kemerer, “ Towards a Metrics Suite for
Object-Oriented Design”, Proceedings of OOPSLA’91 (Oct. 6-11, Phoenix,
Arizona). ACM Press, October 1991

* http://www.hatteras.com/

Step 1 Select class Dictionary and switch to the Metrics page of the class editor

notebook.
D Browser B

EIPIEIRAERNES 4 B Comment| = RC | £ Analysis | B@ Clusters | G Metrics »

Coledtons-STeams =

p Swing S T nr. of Superclasses. | 3

Collechons-Support nr. of Subclasses: | 16

Collections-Test

Collections-Unordersd nr.of Class Methods: I 3

C ued Calegores

Database-Intertace nr. of Instance Methods: | 45

e nr_of Available Instance Methods: =%

RSP | nr_of Available Class Methods: 406

* | nr.of Class Variables: | 0

Monttyluctionary nr. of Instance Yariables: | 0

Ehas % Commented Methods: [&

WeakDktionary Average Number of Method Arguments: | 235556
Response. | 128
Specialisationindex: | 1.33333

@® inztance O Class

The numbers speak for themselves, except the two last ones.

The response is defined as the sum of the number of local methods and the
number of methods invoked by the local methods.

The specialisation index is defined as the sum of the nesting level of aclass
and the number of overridden methods, divided by the total number of
methods in that class. See the references for more information.

Reuse Contracts as a basis for investigating reusability of Smalltalk code 9

Step 2 Examine metrics of other classes.
For example, take alook at Filename, Collection, and False.

EXERCISE 6

The goal of thisexercise isto examine your own classes with the browser.

Step 1 Closethe browser.
Filein your classes.

Step 2 Open abrowser and examine your classes.

If you have suggestions for improvements to the browser, please do not hesitate to send
them to kdehondt@vub.ac.be.

If you are interested to show the browser to other people, you are entitled to copy the
image and the changes file used in this tutorial, or contact Koen De Hondt viae-mail to
get thefile outs.

Check http://progwww.vub.ac.be/prog/pools/rcs for further developments.

10 Reuse Contracts as a basis for investigating reusability of Smalltalk code

