
Reuse Contracts as a basis for investigating
reusability of Smalltalk code

Tutorial Exercises

ESUG’97 Summer School

Koen De Hondt
Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel

kdehondt@vub.ac.be

Style conventions used in this text:
Text in italic: text that you read on screen

2 Reuse Contracts as a basis for investigating reusability of Smalltalk code

IMPORTANT The software you are about to use is a development version, but
problems are not expected.

EXERCISE 1 GETTING ACQUAINTED WITH THE BROWSER

The browser used in these exercises is a bit more sophisticated than the standard
VisualWorks browser. The goal of this exercise is to get acquainted with the browser
and to get an overview of its functionality.

Step 1 Open the exercises image. You should see a launcher.
Press the Browse button. A menu of available browsers appears.
Select ESUG’97 Browser and position the window as desired (full screen is
best).

Step 2 The ESUG’97 browser’s structure differs somewhat from the structure of
the standard VisualWorks browser.
The category and class lists are placed vertically instead of horizontally. The
combination of the category list, the class list, and the instance/class switch
is know as the “class selector”. What you see on the right side of the class
selector is called the “class editor” (or “class viewer” when no editing is
allowed).

Class editor

Class selector

The class selector is in fact a notebook, which allows the user to pick the
most appropriate view to select a class. From left to right you find:

• a category list and a class list, as in the standard VisualWorks browser

• a category menu and a class list

Reuse Contracts as a basis for investigating reusability of Smalltalk code 3

• a list in which classes are nested in categories

• an alphabetical class list

• a hierarchical class list

• a query field and a class list

Switching from one page to another in the notebook preserves the class
selection. Note that the class selector does not have a ‘Find class…’
command, since that functionality is covered by the last page in the
notebook, i.e. the combination of a query field and a class list.

Select a class and explore the different pages in the class selector notebook.

Step 3 The class editor is also a notebook. Each page contains a different
editor/viewer. The class editor notebook in the ESUG’97 browser contains
4 familiar pages, such as Definition, Methods, Hierarchy, and Comment,
and 4 extra pages for this tutorial:

• the reuse contracts (RC) page

• the Analysis page

• the Clusters page

• the Metrics page

Select a class and explore the 4 first pages in the class editor notebook.

It is impossible to create a new class by editing a new class template and
accepting it, as is the standard way in the VisualWorks browsers. Instead,
new classes are created with the New Class… command (in the menu of any
class list) and instance variables, class variables, and pool dictionaries are
entered on the Definition page of the class editor notebook.

The ESUG’97 browser does not display change request dialogs when the
user makes another selection before accepting any editions. So if you edit a
class on the Definition page, or if you edit a method on the Methods page,
or if you edit a class comment on the Comment page, make sure that you
accept the changes before switching to another page, selecting another class,
or selecting another method.

EXERCISE 2

The goal of this exercise is to examine class hierarchies based on reuse contracts.

Step 1 Select class ReadWriteStream in the class selector notebook and switch to
the RC page of the class editor notebook. A “busy” mouse pointer indicates
that reuse contracts are being extracted from the selected class and all its

4 Reuse Contracts as a basis for investigating reusability of Smalltalk code

superclasses. This information is not cached, so picking another class (or
the same class) will start the extraction process again.

The RC page consists of 3 views. The list on the left shows the result of the
extraction process: all classes in the superclass chain of the selected class,
with the extracted reuse operators between them. When a selection in this
list is made, the details of the selection are shown in the top right list view.
The extension and refinement reuse operators use the color green to indicate
what was added with respect to the superclass, while the cancellation and
coarsening reuse operators use the color red to indicate what was removed.
The bottom right view shows the body of a method selected in the top right
view.

Classes and

reuse operators Methods in

selected class or

reuse operator

Body of selected

method

Step 2 Investigate the extracted information. In particular, look what happens with
the #next method in the class chain from Stream to ReadWriteStream. This
information is used on slides (45 – 53) of the presentation. #next is
introduced as an abstract method by the extension from Object to Stream.
PeekableStream, PositionableStream, and InternalStream do not override it,
but WriteStream removes it (see the cancellation from InternalStream to
WriteStream). Finally, ReadWriteStream re-introduces #next as a concrete
method (in fact a primitive).
It is rather strange that an abstract method is removed from a subclass
because it is not appropriate and then re-introduced in a subclass, but keep
in mind that the Stream hierarchy should be (partly) a multiple inheritance
hierarchy. ReadWriteStream is the class that combines WriteStream and
ReadStream behavior. Such combination typically gives rise to design
problems in a single inheritance language.

Reuse Contracts as a basis for investigating reusability of Smalltalk code 5

Step 3 Examine the reuse operators for other class chains.
For example, take a look at Array, IdentityDictionary, View, and
AspectAdaptor.

EXERCISE 3

The goal of this exercise is to analyse source code with the browser and look for code
that might hinder reuse.

Step 1 Select class View and switch to the Analysis page of the class editor
notebook. A “busy” mouse pointer indicates that analysis data are being
extracted from the selected class and all its superclasses. These data are
cached, so picking another class (or the same class) will not start the
extraction process again. In this development version of the browser
however, the (whole) cache is invalidated when a method is accepted in an
ESUG’97 browser.

Step 2 The top of the Analysis page displays several check boxes. Each check box
corresponds to an annotation shown after the instance variables and methods
in the views below. The check boxes allow to selectively show analysis
information in these views. Press the Update! button to apply changes to the
state of the check boxes.

Body of selected

method

Methods

IVs

Annotations

Annotation

check boxes

The view below the check boxes lists the instance variables of the selected
class. For now, typing information (typed-IV) is the only information

6 Reuse Contracts as a basis for investigating reusability of Smalltalk code

extracted from the source code. The required interface is the set of messages
that is sent to the instance variable. The assigned types are the classes of
which instances are assigned to the instance variable. When the required
interface and the assigned types contains enough information, a best type
can be derived. It is the class that best matches the extracted information.

The view below the instance variables lists the methods defined by the
selected class. The bottom view displays the body of the selected method.

Although many more useful annotations can be imagined, for now the
following method annotations are extracted from the source code:

self-sends: the set of messages sent by the method through self sends (i.e.
the specialisation clause). For primitive methods this set is empty, even if
the method contains primitive failure code.

primitive: this annotation is present if the method is a primitive method.

factory: this annotation is present if the method is a factory method, i.e. a
method that does nothing but returning a class (this is the implementation in
Smalltalk of the “factory method” design pattern).

accessor/mutator:a method is annotated with accessor or mutator when
the method is an accessor or mutator method respectively.

abstract: this annotation is present when the method is an abstract method.

template: this annotation is present when the method is a template method,
i.e. a method that invokes at least one abstract method through a self send.

super-sends: the set of messages sent by the method through super sends.

super-does-not-understand: this annotation indicates that the listed
messages are not implemented in any of the superclasses of the method’s
class. This annotation reflects a bug.

just-super-send: this annotation indicates that the method contains only a
super send. This method can be safely removed without affecting the
behavior of the class.

bad-super-send: this annotation indicates that the method invokes a
method with a different name through a super send. Bad super sends are a
classic example of bad coding style that inhibits reuse. Often a developer is
compelled to use bad super sends, because the method in the superclass is
not written with reuse in mind. Factorization of the method in the superclass
into smaller methods would solve many problems, since the developer can
override in a more fine-grained way.

multiple-sends: this annotation lists the messages that are invoked
repeatedly. This might, or might not, be a problem. It is interesting to have
this information for performance reasons, for instance when time
consuming methods are invoked several times.

self-does-not-understand: this annotation indicates that the listed
messages (invoked through self sends) are not part of the interface of the
method’s class. This annotation reflects a bug.

called-by: this annotation lists the methods that call this method (i.e. the
senders of a method within the class).

Reuse Contracts as a basis for investigating reusability of Smalltalk code 7

self-argument: this annotation lists the methods that send messages with
self as argument. Such message sends indicate possible collaborations of the
method’s class and the classes of the invoked methods. When you want to
override a method that passes the receiver as an argument, have a look at the
method that receives the receiver as an argument, because it could send
messages back to that receiver. Maybe you have to adapt more than this
method in order to get the desired result.

Each type of annotation has a different color, so that annotations of the same
type are spotted easily. The red annotations concern bugs, bad coding style,
and reuse inhibitors. The other colors have no special meaning.

Step 3 Have a look at the annotations of the following methods and think about
how you would eliminate the problem:

Class Method

TwoByteString sizeInBytes

Symbol stringHash

UninterpretedBytes sizeInBytes

MacFilename moveTo:

EXERCISE 4

The goal of this exercise is to explore the clustering view of the browser. Note that this
view is highly experimental .

A cluster is a set of methods that invoke each other within a class. Clusters give an
indication of which methods belong together, or which methods are concerned with a
certain aspect of the class in which the methods reside. For now, only one type of
clustering is supported. Other ways of clustering are under investigation.

Step 1 Select class Dictionary and switch to the Clusters page of the class editor
notebook.

The Clusters page roughly consists of two views. The top view lists all
clusters that could be found in the selected class. When a cluster is selected,
the bottom view displays the details of the selected cluster, according to the
state of the pop-up menu and the current layer (on which no details are given
here).
When a cluster contains enough methods (currently more than 5), the cluster
can be viewed as a divided cluster. The cluster is then divided into one, two,
or three parts. The division is based on the number of invocations of the
methods in the cluster. The called most part lists the methods that are
invoked in more than 35% of all method invocations in the cluster. The

8 Reuse Contracts as a basis for investigating reusability of Smalltalk code

peripherals part lists all methods that are not invoked from within the cluster
(and thus not from within the class). The called less part lists all methods in
the cluster that are not in the two other parts.

Clusters

Core methods Peripheral methods

Details of

selected

cluster

The methods in the called most part are called “core methods”, while the
methods in the peripheral part are called “peripheral methods”. This
categorization gives interesting information to subclassers. When a core
method is overridden in a subclass, the developer can expect that this action
will have an effect on the methods that invoke that method. The developer
can read the affected methods from the cluster. Typically, these core
methods are private methods and will not be invoked from outside the class.
Peripheral methods, on the other hand, are invoked from outside the class.
Thus overriding a peripheral method has no effect on the class itself, but on
the clients of the subclass. Therefore clustering information is crucial for
developers who want to override peripheral methods.

In the figure above, there is a cluster concerning finding keys. The
#findKeyOrNil: method is a core method and seems to play an important
role in many other methods. It is clear that overriding this method in a
subclass of Dictionary should be done with special care.

Step 2 Examine clusters for other classes.
For example, take a look at Collection (cluster for enumeration), Stream
(cluster for putting objects on a stream), Object (cluster for the dependency
mechanism), and VisualComponent (cluster for bounds).

Reuse Contracts as a basis for investigating reusability of Smalltalk code 9

EXERCISE 5

The goal of this exercise is to explore the metrics view of the browser. This view
shows metrics data for the selected class. As the clusters page, the metrics view is still
in an experimental phase. Although we believe that the numbers shown in this view are
of limited use, we have added this view anyway.

Detailed information about the meaning of the numbers can be found in:

• Brian Henderson-Selllers, “Object-Oriented Metrics, Measures of Complexity”.
Prentice Hall

• Shyam R. Chidamber and Chris F. Kemerer, “Towards a Metrics Suite for
Object-Oriented Design”, Proceedings of OOPSLA’91 (Oct. 6–11, Phoenix,
Arizona). ACM Press, October 1991

• http://www.hatteras.com/

Step 1 Select class Dictionary and switch to the Metrics page of the class editor
notebook.

The numbers speak for themselves, except the two last ones.
The response is defined as the sum of the number of local methods and the
number of methods invoked by the local methods.
The specialisation index is defined as the sum of the nesting level of a class
and the number of overridden methods, divided by the total number of
methods in that class. See the references for more information.

10 Reuse Contracts as a basis for investigating reusability of Smalltalk code

Step 2 Examine metrics of other classes.
For example, take a look at Filename, Collection, and False.

EXERCISE 6

The goal of this exercise is to examine your own classes with the browser.

Step 1 Close the browser.
File in your classes.

Step 2 Open a browser and examine your classes.

If you have suggestions for improvements to the browser, please do not hesitate to send

them to kdehondt@vub.ac.be.

If you are interested to show the browser to other people, you are entitled to copy the

image and the changes file used in this tutorial, or contact Koen De Hondt via e-mail to

get the file outs.

Check http://progwww.vub.ac.be/prog/pools/rcs/ for further developments.

