——— Smalltalk Processes ———

\ Rob Vens
N Sepher Software

ESUG Smalltalk:Summer: Schoeal, Utrecht: 1995

—Torenstraat 12-14
9988 SP Usquert

The Netherlands

Voice:+31-5950 5025 (after100c
ax:+31-5950 5283 e 100t 05

E-mail: 73064.3461@compu

Tiraining; con. tancy; mentaring; development

— |ntroduction

¢ Smalltalk processes are often little =
understood

¢ Useof processesis often avoided or.
_wrongly-applied

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

Agenda

> Quick tour: Smalltalk Agents

implementation
(S— 7101 00 [<N 0] o | R ———

¢ Processesand the External World
—— oA Simulation-Example

— Vocabulary

¢ Smalltalk code or namedabjectsis —

in this font, message patternsin this

font, commentinthisfont
¢ Ccodeisinthi s font

¢ Unless specified the examplesarefor.
arcPlace® VisualWorks®2:

+ However, we strive for-general
— applicability-in-all-Smalltalk-dialects
— (ANSIstandardization-effort)

— Smalltalk Processes

¢ Priority levels
~—— & Scheduling

——— ¢ Synchronization

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

Priority-l-evels

¢ ParcPlace® VisualWorks® 2.0:

»_100 priority levels available

»_8.common levels (“ Blue Book™)

—— ProcessorlowlOPriority

> Other levels specified by sendingitothe
Pr-oCess:

— priority: 33

— “Blue Book™ Priority-l-evels

isualWorks® level

100 UIminmgreriority
98—highl OPriority

— 90 lowlOPriority.
— 70_ _userinterruptPriority.

——50-—userSchedulingPriority

30" userBackgroundPriority.
10 systemBackgroundPriority

1 systemRockBottomPriority.

— Processcreation

1. UseBlockstocreatenewprocesses
> Implicit process creation using fork

> Explicit process creation using newProcess
2. Spawn a new pr.ocess from the active user

interface process by BIRg it(eg.ona

semaphor.e; or-sendingit suspend): This
willforcethe user interface processto
createanew

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

I mplicit processcreation

[55 factarial] fork.
— [65factorialjforkAt———————

Processor userSchedulingPriority

— Explicit processcreation

¢ ExampleusingnewProcess:
— |- myProc |

—myProc =55 factorial] newProcess:

myProcresume

—— & Equivalent-with-fork;-onlyreturns
reference toprocess(here myProc)

¢ Provideargumentsat runtimewith
— newProcessWithArguments:

anArray

— Processtermination——

4 On return from the block
— ¢ By-sendingterminate

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

Processarchitecture (1)

Priority Queues

— Processarchitecture(2)

¢ Processor issoleinstance of class
ProcessScheduler

¢ Processor manages instances of
class Process

¢ Processesarenon-preemptively
scheduled according to priority

- Runningprocesses can-choeseto
— vijeld control-with:-Processor-yield.
— Waitingprocesseswithrequal

priority get a chancetorun

——Processstates——————

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

—V1sualvv0r4<s1mage(1)7

¢ Onstartup VW 2.0thereare18; 19, or 20
processes; after garbage collection, there

are 10

¢ Therearefour window processes:
» 2for thewindows on the screen

> 1for thetransient window which isa class
variablein Menu

» Thethird window (labeled “Scratch Window?)

hasno hand e, and isalmost gone
. & ThelOprocesseshavepriorities: 1001000

98198 9090190505010

Processes In standard
VisualWorksimage (2):

— VisualWorks Transcript window process 50 ->a Processimnil
Workspace window process 50->a Processin nil
s(inDelayclass). — 100->aProcessin

Semaphore»wait

T ss(imProcessclass)m— 100=>aProcessinm—
Semaphore>>wait

(in WeakArray class): 98->aProcessin

Semaphor e>>wait

& € (in CCallBack-class);———98->aProcessin
Semaphor (=T

(in WeakArray class):90->a Processin nil

ninpu ate class). ->aProcessin

Semaphore>>wait
g (in ObjectMemory class): 90 ->aProcessin

. Semaphore>>wa|t

(in ObjectMemory class): 10->aProcessin
Semaphore>>wait

xample

Sorting procesé (1)

— # Createand scheduleaprocessinthebackground—
tosort-alargecallection:

myProc answer
I myProc:=[answer = (ObjectwithAllSubclasses collect: —

:each | .each name]) asSortedCollection. answer.
- inspectjnewProcess.

myPrac priority: Processor.userBackgroundPriority.

~— myProcrestme: ——

¢ Thisexamplereturnsimmediately with nil, and
sometime |later ahandicapped inspectar.

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

Example 1 (2

— What you'velearned-——

¢ Standard Process architecture
— ¢ Processesin-standard-Smalltalk

11 = —
— & Howtocreate new processes

Pr-ocess Syncnhronization

technigues

4 Semaphores
— ¢ Maonitors

— ¢ Shared Queues

#_Delays
-~ & RecursivelLock

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

Semaphores

4 _How-canl-usethem?

— What aresemaphores?

¢ Simple mechanismsto handle
processes

#_Therunning process sends wait to
- thesemaphoreand getssuspended. |

— (iftherearenoexcesssignals)
& Theprocessisresumedwhen the

semaphoreis signaled by anyone

— Useofasemaphore——

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

M-onitors

isprotected against morethan one

process
~— # Canbedonewithoneormore

——semaphoresthat-aresignaled-or
waited beforeand-after-thecritical
— section

L crticalBlock-valueUninterruptably.

SharedQueue

¢ Isan implementation of a monitor —
— & Processesattempting to get elements

~ fromthequeueareblocked when

. therearenoeéementsavailable

¢ Processesputting €lementsonthe
gueue eventually wake-up a

reguesting pr.ocess
4 Queue aceessis concurrent-safe
= (whichisNOT: thecasefar-"regular®

collections!)

— Promise

¢ Returnsan “object” but forksa
processto fetch the actual object

¢ Canbeusedtoprovidethe
-~ user-interfacewith model objectsso. |

—— thatit starts-upimmediately

¢ Actual-display of real values aceurs
later

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

Delays

amount of time

— Recursivel-ock

¢ Nestedcritical regionssurrounded
by blocks can becreated

¢ Deadlock isavoided

— What you'velearned-——

¢ Several process synchronization
techniques

¢ | ook for several implementations of
- “classical” concurrenceproblemsin
—theexampledirectory

C\TUTOR\VENS

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

SmalltalkAgents (1)

¢ Architected for-multi-platform,

distributed environments
-~ & Avoidsuseof semaphores |

¢ Thread architecture permeates
——applicatien-architecture

¢ Architecturebased onisemantic
messagesposted onrthread queues

— SmalltalkAgents(2)

¢ Exactly one activethread at any
given time

¢ UIScheduler.thread coordinates
— user-interface activity.

¢ Allthreads have execution state(e.g:
running, waiting; sleeping; halted;

etc,)

¢ Pre-emptiveschedulingina———

— SmalltalkAgents(3)———

Q= Thread run:

_ [1t0:10000 do:
[:anindex |
Console message: anindex].

Q sleep:. “suspends execution”
Q wakeup. “resumes execution”
terminate “terminates execution”

_____ & Createsathread pre-emptively.time
diced with user interfacethread

——— ¢ Backgroundthreadsare usually-unableto
. performuser-interface operations

* read swapping can bedi 0

achievethis

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

~ SmalltalkAgents(4)

¢ Usepseudo-variablethread to access
— thecurrently.runningthread
Example below_passes contr.ol

sooner. than the scheduled time-slice
— (usually-1/60 second):

- Q:=Tthreadon::
[1to:-10000do:
[:anindex |

L Conseole.message: anindex.

C [l

]

— External resources——

¢ Semaphores can be signaled by
external processes

¢ Pdlingexternalresourceshy.

- Smalltalk isdelegated tothe. |

———operatingsystem-facilities

Signaling Semaphores(1)

— > Createasemaphorein Smalltalk
> Get a pointer_to the semaphorein your

C code:
- (typeoe®@p)
. Register. thesemaphorewiththeVM: |

static oelnt slot;
sl'ot = oeAll ocRegistrySlot();
oeRegi-st eredHandl eAt Put (sl ot

= senm;

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

Signalling-Semaphores(2)

> When you want to signal the semaphore:
> Get a pointer to the semaphore from the

registry (do not usethe previous one!):
sem = oeRegi st eredHandl eAt (slot);

_Signal thesemaphore:
0eSi gnal Semaphore(sen ;

— What you'velearned-——

¢ Handling processeswith the
“external world”

Simulation

¢ Processes can be effectively utilized =
in discrete event ssmulation

frameworks
¢ A simpleframework consists of:

>—Anevent-quenewith blocked processes
— sorted by wakeuptime————

> Simulation Objectswith tasks

implemented using blocks
—— e Asan-example-wewill-usethe“Blue

Book™ smulation framework

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

ClassDelayedEvent (1)

resumptionSemaphore
resumptionCondition
DelayedEvent

amount

resource

N
Waiting LC
SimulationObject

— ClassDelayedEvent (2)

pause
" Suspend the current active process,

—thatis the current-event-that-is
— running:

Simulation active stopProcess.

resumplonemap 10re wait

— Resources(1)

¢ All'blocking resourcesareimplemented
as Resource subclasses:

pending
resourceName

Resource y—— — — —— —— —— ————
Resource amountAvailable
Provider

? Resource mastersPending
Coordinator

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

ESOuUl

— ClassResource————

This_abstract class represents the resource.in
— termsofits name and-the queue-of requests —
_____that must be satisfied.

Instance Variables:
— pendingr— <SortedCollection of - WaitingSimulationObject>—

L resourceName <String>with the name of the resource

Class ResourceProvider

& Model resources without tasks
— ¢ Count-number—ofitems(amount)

~— & Onsuccessful acquire; providetheresource:
)/

> returningthe delayed event
> decrement the amount

L Instance Variables: ==
- amountAvailable=— <integer=

Acguiring static resources-1

— acquire: amountNeededwithPriority: —
priorityNumber

| waiting |

- withPriority: pricrityNumber.
£ waiting time: Simulation active time:
£ selfladdRequest: waiting.

Awaiting

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

ESOuUl

—Acquiring static resources-2——

“Add arequest-to obtain a resource. Tryto

fulfill the request.”

self addToPending: aDelayedEvent.
~ selfprovideResources.

— aDelayedEvent-pause

Add anew CTaés

~ & Moddsaresourcethat representsa |
condition, which must evaluateto

true for waiting (pending) objectsto
resume

——+ Each-waiting-aobject-can-haveitsown
———condition;-aswell-asoneshared

¢ Namethenew class
ResourceCondition

— ¢ ReusetheexistingResources:—

framework

— Resources(7)

pending
resourceName

Resource

Resource testBlock
- Condition I

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

ESOuUl

—— Acgquiringresources-1——

acquireOnCondition: aBlock withPriority: priorityNumber
|-waiting |

(testBlock value and: [aBlock value])
ifTrue: [Aself].

" Get hereif one or both of the conditions are not met."
waiting := WaitingSimulationObject
for: 1

L ofiaBlock
withPriority: priorityNumber.

self.laddRequest: waiting.
Awaiting

— What you'velearned-——

¢ Process utilization in implementing a
simple simulation framework

> use of semaphores and monitors
—explicitly yielding control to other

- rocesses

Summary

~— & You'velearnedtoapply processes |
for:

» Keepingtheuser interfaceresponsve

~ Connecting Smalltalk totheexternal
-~ world

- > Simulation.
¢ Pleasefilllin the evaluation forms

ESUG Smalltalk Summer School
11-09-1995 Copyright © 1995 - Sepher Software

2 2

<

Example sour.ce code on the exercise

machinesin_directory:
C:\ TUTCR\ VENS

Consulting services available

11-09-1995

ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software

18

