
ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 1

Rob VensRob Vens
Sepher SoftwareSepher Software

ESUG Smalltalk Summer School, Utrecht 1995ESUG Smalltalk Summer School, Utrecht 1995

Smalltalk ProcessesSmalltalk Processes

SSepher epher SSoftwareoftware

Torenstraat 12-14Torenstraat 12-14

9988 SP Usquert9988 SP Usquert
The NetherlandsThe Netherlands
Voice: +31 5950 5025 Voice: +31 5950 5025 (after 10 oct. ‘95: +31 59 542 50 25)(after 10 oct. ‘95: +31 59 542 50 25)

Fax: +31 5950 5283 Fax: +31 5950 5283 (after 10 oct. ‘95: +31 59 542 52 83)(after 10 oct. ‘95: +31 59 542 52 83)

E-mail: 73064.3461@compuserve.comE-mail: 73064.3461@compuserve.com

Training, consultancy, mentoring, developmentTraining, consultancy, mentoring, development

Introduction Introduction 

uu Smalltalk processes are often little Smalltalk processes are often little 
understoodunderstood

uu Use of processes is often avoided or Use of processes is often avoided or 
wrongly appliedwrongly applied



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 2

AgendaAgenda

uu Introduction to Smalltalk processesIntroduction to Smalltalk processes
ØØ Quick tour: SmalltalkAgents Quick tour: SmalltalkAgents 

implementationimplementation

uu 15 min. coffee break15 min. coffee break

uu Processes and the Processes and the External WorldExternal World

uu A Simulation ExampleA Simulation Example

VocabularyVocabulary

uu Smalltalk code or named objects is Smalltalk code or named objects is 
in in this fontthis font , message patterns in , message patterns in this this 
fontfont, comment in , comment in this fontthis font

uu C code is in C code is in this fontthis font

uu Unless specified the examples are for Unless specified the examples are for 
ParcPlaceParcPlace ®®  VisualWorks VisualWorks®®  2.0 2.0

uu However, we strive for general However, we strive for general 
applicability in all Smalltalk dialects applicability in all Smalltalk dialects 
(ANSI standardization effort)(ANSI standardization effort)

Smalltalk ProcessesSmalltalk Processes

uu Priority levelsPriority levels

uu SchedulingScheduling

uu SynchronizationSynchronization



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 3

Priority LevelsPriority Levels

uu ParcPlaceParcPlace ®®  VisualWorks VisualWorks®®  2.0: 2.0:
ØØ 100 priority levels available100 priority levels available

ØØ 8 common levels (“Blue Book”) 8 common levels (“Blue Book”) 
accessed by methods, i.e..:accessed by methods, i.e..:
Processor lowIOPriorityProcessor lowIOPriority

ØØ Other levels specified by sending to the Other levels specified by sending to the 
process:process:

… priority: 33… priority: 33

“Blue Book” Priority Levels“Blue Book” Priority Levels

100100 timingPrioritytimingPriority

9898 highIOPriorityhighIOPriority

9090 lowIOPrioritylowIOPriority

7070 userInterruptPriorityuserInterruptPriority

5050 userSchedulingPriorityuserSchedulingPriority

3030 userBackgroundPriorityuserBackgroundPriority

1010 systemBackgroundPrioritysystemBackgroundPriority

11 systemRockBottomPrioritysystemRockBottomPriority

VisualWorks® level

Process creationProcess creation

1.1. Use Use BlocksBlocks  to create new processes to create new processes
ØØ Implicit process creation using Implicit process creation using forkfork

ØØ Explicit process creation using Explicit process creation using newProcessnewProcess

2.2. Spawn a new process from the active user Spawn a new process from the active user 
interface process by blocking it (e.g.. on a interface process by blocking it (e.g.. on a 
semaphore, or sending it semaphore, or sending it suspendsuspend). This ). This 
will force the user interface process to will force the user interface process to 
create a newcreate a new



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 4

Implicit process creationImplicit process creation

uu Examples using Examples using forkfork::

[55 factorial] fork.[55 factorial] fork.

[55 factorial] forkAt: [55 factorial] forkAt: 

Processor userSchedulingPriorityProcessor userSchedulingPriority

Explicit process creationExplicit process creation

uu Example using Example using newProcessnewProcess::

| myProc || myProc |

myProc := [55 factorial] newProcess.myProc := [55 factorial] newProcess.

myProc resumemyProc resume

uu Equivalent with Equivalent with forkfork, only returns , only returns 
reference to process (here reference to process (here myProcmyProc))

uu Provide arguments at runtime with Provide arguments at runtime with 
newProcessWithArguments: newProcessWithArguments: 
anArrayanArray

Process terminationProcess termination

uu On return from the blockOn return from the block

uu By sending By sending terminateterminate



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 5

Process architecture (1)Process architecture (1)

ProcessorProcessor

P10P10

P50P50
P70P70

Priority QueuesPriority Queues

activeProcessactiveProcess

…… …… ……

P = priority

Process architecture (2)Process architecture (2)

uu Processor Processor is sole instance of class is sole instance of class 
ProcessSchedulerProcessScheduler

uu Processor Processor manages instances of manages instances of 
class class ProcessProcess

uu Processes are non-preemptively Processes are non-preemptively 
scheduled according to priorityscheduled according to priority

uu Running processes can choose to Running processes can choose to 
yield control with yield control with Processor yieldProcessor yield . . 
Waiting processes with equal Waiting processes with equal 
priority get a chance to runpriority get a chance to run

runnablerunnable

Process statesProcess states

waitingwaiting suspendedsuspended

runningrunning

su
sp

en
d

su
sp

en
d

sem
 signal

sem
 signal

sem
 w

ait

sem
 w

ait

re
su

m
e

re
su

m
e



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 6

Processes in standard Processes in standard 
VisualWorks image (1):VisualWorks image (1):

uu On startup VW 2.0 there are 18, 19, or 20 On startup VW 2.0 there are 18, 19, or 20 
processes; after garbage collection, there processes; after garbage collection, there 
are 10are 10

uu There are four window processes:There are four window processes:
ØØ 2 for the windows on the screen2 for the windows on the screen

ØØ 1 for the transient window which is a class 1 for the transient window which is a class 
variable in variable in MenuMenu

ØØ The third window (labeled ‘Scratch Window’) The third window (labeled ‘Scratch Window’) 
has no handle, and is almost gonehas no handle, and is almost gone

uu The 10 processes have priorities: 100 100 The 10 processes have priorities: 100 100 
98 98 90 90 90 50 50 1098 98 90 90 90 50 50 10

Processes in standard Processes in standard 
VisualWorks image (2):VisualWorks image (2):

VisualWorks Transcript window processVisualWorks Transcript window process 50 -> a Process in nil50 -> a Process in nil

Workspace window processWorkspace window process 50 -> a Process in nil50 -> a Process in nil

TimingProcess TimingProcess (in (in Delay classDelay class ):): 100 -> a Process in 100 -> a Process in 
Semaphore>>waitSemaphore>>wait

TerminationProcess TerminationProcess (in (in Process classProcess class ):): 100 -> a Process in 100 -> a Process in 
Semaphore>>waitSemaphore>>wait

FinalizationProcess FinalizationProcess (in (in WeakArray classWeakArray class ):): 98 -> a Process in 98 -> a Process in 
Semaphore>>waitSemaphore>>wait

CallBackProcess CallBackProcess (in (in CCallBack classCCallBack class ):): 98 -> a Process in 98 -> a Process in 
Semaphore>>waitSemaphore>>wait

outerFinalizationLoop outerFinalizationLoop (in (in WeakArray classWeakArray class ):): 90 -> a Process in nil90 -> a Process in nil

InputProcess InputProcess (in (in InputState classInputState class ):): 90 -> a Process in 90 -> a Process in 
Semaphore>>waitSemaphore>>wait

LowSpaceProcess LowSpaceProcess (in (in ObjectMemory classObjectMemory class ):): 90 -> a Process in 90 -> a Process in 
Semaphore>>waitSemaphore>>wait

IdleLoopProcessIdleLoopProcess  (in  (in ObjectMemory classObjectMemory class ):): 10 -> a Process in 10 -> a Process in 
Semaphore>>waitSemaphore>>wait

Example 1:Example 1:
Sorting process (1)Sorting process (1)

uu Create and schedule a process in the background Create and schedule a process in the background 
to sort a large collection:to sort a large collection:

| myProc answer || myProc answer |

myProc := [answer := (Object withAllSubclasses collect: myProc := [answer := (Object withAllSubclasses collect: 
[:each | each name]) asSortedCollection. answer [:each | each name]) asSortedCollection. answer 
inspect] newProcess.inspect] newProcess.

myProc priority: Processor userBackgroundPriority.myProc priority: Processor userBackgroundPriority.

myProc resume.myProc resume.

^answer^answer

uu This example returns immediately with This example returns immediately with nilnil , and , and 
sometime later a handicapped inspectorsometime later a handicapped inspector



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 7

Example 1 (2)Example 1 (2)

What you’ve learnedWhat you’ve learned

uu Standard Process architectureStandard Process architecture

uu Processes in standard Smalltalk Processes in standard Smalltalk 
imageimage

uu How to create new processesHow to create new processes

Process synchronization Process synchronization 
techniquestechniques

uu SemaphoresSemaphores

uu MonitorsMonitors

uu Shared QueuesShared Queues

uu DelaysDelays

uu RecursiveLockRecursiveLock



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 8

SemaphoresSemaphores

uu What are semaphores?What are semaphores?

uu How can I use them?How can I use them?

What are semaphores?What are semaphores?

uu Simple mechanisms to handle Simple mechanisms to handle 
processesprocesses

uu The running process sends The running process sends wait wait to to 
the semaphore and gets suspended the semaphore and gets suspended 
(if there are no excess signals)(if there are no excess signals)

uu The process is resumed when the The process is resumed when the 
semaphore is signaled by anyonesemaphore is signaled by anyone

Use of a semaphoreUse of a semaphore

SemaphoreSemaphore

print
queue

waitwaitjob 1
job 2

job 3
job 4

signalsignal

11
resumeresume



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 9

MonitorsMonitors

uu A Monitor is a section of code which A Monitor is a section of code which 
is protected against more than one is protected against more than one 
processprocess

uu Can be done with one or more Can be done with one or more 
semaphores that are signaled or semaphores that are signaled or 
waited before and after the critical waited before and after the critical 
sectionsection
criticalBlock valueUninterruptablycriticalBlock valueUninterruptably

SharedQueueSharedQueue

uu Is an implementation of a monitorIs an implementation of a monitor

uu Processes attempting to get elements Processes attempting to get elements 
from the queue are blocked when from the queue are blocked when 
there are no elements availablethere are no elements available

uu Processes putting elements on the Processes putting elements on the 
queue eventually wake-up a queue eventually wake-up a 
requesting processrequesting process

uu Queue access is concurrent-safe Queue access is concurrent-safe 
(which is NOT the case for “regular” (which is NOT the case for “regular” 
collections!)collections!)

PromisePromise

uu Returns an “object” but forks a Returns an “object” but forks a 
process to fetch the actual objectprocess to fetch the actual object

uu Can be used to provide the Can be used to provide the 
user-interface with model objects so user-interface with model objects so 
that it starts-up immediatelythat it starts-up immediately

uu Actual display of real values occurs Actual display of real values occurs 
laterlater



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 10

DelaysDelays

uu Pause the current process a specified Pause the current process a specified 
amount of timeamount of time

RecursiveLockRecursiveLock

uu Nested critical regions surrounded Nested critical regions surrounded 
by blocks can be createdby blocks can be created

uu Deadlock is avoidedDeadlock is avoided

What you’ve learnedWhat you’ve learned

uu Several process synchronization Several process synchronization 
techniquestechniques

uu Look for several implementations of Look for several implementations of 
“classical” concurrence problems in “classical” concurrence problems in 
the example directory the example directory 

C:\TUTOR\VENSC:\TUTOR\VENS



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 11

SmalltalkAgents (1)SmalltalkAgents (1)

uu Processes are called Processes are called ThreadsThreads

uu Architected for multi-platform, Architected for multi-platform, 
distributed environmentsdistributed environments

uu Avoids use of semaphoresAvoids use of semaphores

uu Thread architecture permeates Thread architecture permeates 
application architectureapplication architecture

uu Architecture based on Architecture based on semantic semantic 
messagesmessages posted on thread queues posted on thread queues

SmalltalkAgents (2)SmalltalkAgents (2)

uu Exactly Exactly oneone  active thread at any  active thread at any 
given timegiven time

uu UISchedulerUIScheduler  thread coordinates  thread coordinates 
user-interface activityuser-interface activity

uu All threads have execution state (e.g. All threads have execution state (e.g. 
running, waiting, sleeping, halted, running, waiting, sleeping, halted, 
etc.)etc.)

uu Pre-emptive scheduling in a Pre-emptive scheduling in a 
round-robin fashionround-robin fashion

SmalltalkAgents (3)SmalltalkAgents (3)
Q := Thread run: Q := Thread run: 

[1 to: 10000 do: [1 to: 10000 do: 
[:anIndex | [:anIndex | 
Console message: anIndex].Console message: anIndex].

Q sleep.Q sleep. “suspends execution”“suspends execution”

Q wakeup.Q wakeup. “resumes execution”“resumes execution”

Q terminateQ terminate “terminates execution”“terminates execution”

uu Creates a thread pre-emptively time Creates a thread pre-emptively time 
sliced with user interface threadsliced with user interface thread

uu Background threads are usually unable to Background threads are usually unable to 
perform user-interface operationsperform user-interface operations

uu Thread swapping can be disabled to  Thread swapping can be disabled to  
achieve thisachieve this



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 12

uu Use pseudo-variable Use pseudo-variable threadthread  to access  to access 
the currently running thread. the currently running thread. 
Example below passes control Example below passes control 
sooner than the scheduled time-slice sooner than the scheduled time-slice 
(usually 1/60 second):(usually 1/60 second):

Q := Thread run: Q := Thread run: 
[1 to: 10000 do: [1 to: 10000 do: 

[:anIndex | [:anIndex | 
Console message: anIndex.Console message: anIndex.
thread yield.thread yield.
].].

].].

SmalltalkAgents (4)SmalltalkAgents (4)

External resourcesExternal resources

uu Semaphores can be signaled by Semaphores can be signaled by 
external processesexternal processes

uu Polling external resources by Polling external resources by 
Smalltalk is delegated to the Smalltalk is delegated to the 
operating system facilitiesoperating system facilities

Signaling Semaphores (1)Signaling Semaphores (1)

ØØ Create a semaphore in SmalltalkCreate a semaphore in Smalltalk

ØØ Get a pointer to the semaphore in your Get a pointer to the semaphore in your 
C code:C code:
(type (type oeOopoeOop ))

ØØ Register the semaphore with the VM:Register the semaphore with the VM:
static oeInt slot;static oeInt slot;
slot = oeAllocRegistrySlot();slot = oeAllocRegistrySlot();
oeRegisteredHandleAtPut(slot, oeRegisteredHandleAtPut(slot, 
sem);sem);



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 13

Signalling Semaphores (2)Signalling Semaphores (2)

ØØ When you want to signal the semaphore:When you want to signal the semaphore:

ØØ Get a pointer to the semaphore from the Get a pointer to the semaphore from the 
registry (do not use the previous one!):registry (do not use the previous one!):
  sem = oeRegisteredHandleAt(slot);sem = oeRegisteredHandleAt(slot);

ØØ Signal the semaphore: Signal the semaphore: 
oeSignalSemaphore(sem);oeSignalSemaphore(sem);

What you’ve learnedWhat you’ve learned

uu Handling processes with the Handling processes with the 
“external world”“external world”

SimulationSimulation

uu Processes can be effectively utilized Processes can be effectively utilized 
in in discrete event simulation discrete event simulation 
frameworksframeworks

uu A simple framework consists of:A simple framework consists of:
ØØ An An event queueevent queue with blocked processes  with blocked processes 

sorted by wake-up timesorted by wake-up time

ØØ Simulation ObjectsSimulation Objects  with tasks  with tasks 
implemented using blocksimplemented using blocks

uu As an example, we will use the “Blue As an example, we will use the “Blue 
Book” simulation frameworkBook” simulation framework



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 14

Class Class DelayedEventDelayedEvent (1) (1)

uu Instances are placed on the event Instances are placed on the event 
queuequeue

DelayedEvent

Waiting
SimulationObject

amount
resource
time

resumptionSemaphore
resumptionCondition

Class Class DelayedEventDelayedEvent (2) (2)

pausepause
"Suspend the current active process, "Suspend the current active process, 
that is, the current event that is that is, the current event that is 
running."running."

Simulation active stopProcess.Simulation active stopProcess.

resumptionSemaphore waitresumptionSemaphore wait

Resources (1)Resources (1)

uu All blocking resources are implemented All blocking resources are implemented 
as as ResourceResource  subclasses: subclasses:

Resource
Provider

amountAvailable

Resource
Coordinator

mastersPending

pending
resourceName

Resource



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 15

Resources (2):Resources (2):
Class Class ResourceResource

uu Class comment:Class comment:

This abstract class represents the resource in This abstract class represents the resource in 
terms of its name and the queue of requests terms of its name and the queue of requests 
that must be satisfied.that must be satisfied.

Instance Variables:Instance Variables:
pendingpending <SortedCollection of: WaitingSimulationObject><SortedCollection of: WaitingSimulationObject>

resourceNameresourceName <String> with the name of the resource<String> with the name of the resource

Resources (3):Resources (3):
Class Class ResourceProviderResourceProvider

uu Model resources without tasksModel resources without tasks

uu Count number of items Count number of items (amount)(amount)

uu On successful acquire, provide the resource On successful acquire, provide the resource 
by:by:
ØØ returning the delayed eventreturning the delayed event

ØØ decrement the amountdecrement the amount

Instance Variables:Instance Variables:

amountAvailableamountAvailable <Integer><Integer>

Resources (4):Resources (4):
Acquiring static resources-1Acquiring static resources-1

acquire: amountNeeded withPriority: acquire: amountNeeded withPriority: 
priorityNumber priorityNumber 

| waiting || waiting |

waiting := WaitingSimulationObjectwaiting := WaitingSimulationObject

for: amountNeeded for: amountNeeded 

of: selfof: self

withPriority: priorityNumber.withPriority: priorityNumber.

waiting time: Simulation active time.waiting time: Simulation active time.

self addRequest: waiting.self addRequest: waiting.

^waiting^waiting



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 16

Resources (5):Resources (5):
Acquiring static resources -2Acquiring static resources -2

addRequest: aDelayedEvent addRequest: aDelayedEvent 

“Add a request to obtain a resource. Try to “Add a request to obtain a resource. Try to 
fulfill the request.”fulfill the request.”

self addToPending: aDelayedEvent.self addToPending: aDelayedEvent.

self provideResources.self provideResources.

aDelayedEvent pauseaDelayedEvent pause

Resources (6):Resources (6):
Add a new ClassAdd a new Class

uu Models a resource that represents a Models a resource that represents a 
conditioncondition , which must evaluate to , which must evaluate to 
truetrue  for waiting (pending) objects to  for waiting (pending) objects to 
resumeresume

uu Each waiting object can have its own Each waiting object can have its own 
condition, as well as one sharedcondition, as well as one shared

uu Name the new class Name the new class 
ResourceConditionResourceCondition

uu Re-use the existing Re-use the existing ResourceResource   
frameworkframework

Resources (7)Resources (7)

Resource
Condition

testBlock

pending
resourceName

Resource



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 17

Resources (7):Resources (7):
Acquiring resources-1Acquiring resources-1

acquireOnCondition: aBlock withPriority: priorityNumber acquireOnCondition: aBlock withPriority: priorityNumber 

| waiting || waiting |

(testBlock value and: [aBlock value])(testBlock value and: [aBlock value])

ifTrue: [^self].ifTrue: [^self].

"Get here if one or both of the conditions are not met.""Get here if one or both of the conditions are not met."

waiting := WaitingSimulationObjectwaiting := WaitingSimulationObject

for: 1for: 1

of: aBlockof: aBlock

withPriority: priorityNumber.withPriority: priorityNumber.

self addRequest: waiting.self addRequest: waiting.

^waiting^waiting

What you’ve learnedWhat you’ve learned

uu Process utilization in implementing a Process utilization in implementing a 
simple simulation frameworksimple simulation framework
ØØ use of semaphores and monitorsuse of semaphores and monitors

ØØ explicitly yielding control to other explicitly yielding control to other 
processesprocesses

SummarySummary

uu You’ve learned to apply processes You’ve learned to apply processes 
for:for:
ØØ Keeping the user interface responsiveKeeping the user interface responsive

ØØ Connecting Smalltalk to the external Connecting Smalltalk to the external 
worldworld

ØØ SimulationSimulation

uu Please fill in the evaluation formsPlease fill in the evaluation forms



ESUG Smalltalk Summer School
Copyright © 1995 - Sepher Software11-09-1995 18

Where to get more Where to get more 
informationinformation

uu Other training sessionsOther training sessions

uu Example source code on the exercise Example source code on the exercise 
machines in directory:machines in directory:

C:\TUTOR\VENSC:\TUTOR\VENS

uu Consulting services availableConsulting services available

QuestionsQuestions

??


