Opal Compiler

Jorge Ressia

Thursday, March 10, 2011

Roadmap

>
>
>
>

The Pharo compiler

Introduction to Smalltalk bytecode
Generating bytecode with IRBuilder
ByteSurgeon

Original material by Marcus Denker

Thursday, March 10, 2011

Roadmap

>
>
>
>

The Pharo compiler

Introduction to Smalltalk bytecode
Generating bytecode with IRBuilder
ByteSurgeon

Thursday, March 10, 2011

The Pharo Compiler

> Default compiler
— very old design
— quite hard to understand
— hard to modify and extend

Thursday, March 10, 2011

What qualities are important in a compiler?

>
>
>
>
>
>
>
>
>

Correct code

Output runs fast

Compiler runs fast

Compile time proportional to program size
Support for separate compilation

Good diagnostics for syntax errors

Works well with the debugger

Good diagnostics for flow anomalies
Consistent, predictable optimization

Thursday, March 10, 2011

Why do we care?

> ByteSurgeon — Runtime Bytecode Transformation for
Smalltalk

ChangeBoxes — Modeling Change as a first-class entity
Reflectivity — Persephone, Geppetto and the rest

> Helvetia — Context Specific Languages with
Homogeneous Tool Integration

> Albedo — A unified approach to reflection.

Thursday, March 10, 2011

http://scg.unibe.ch/research/bytesurgeon
http://scg.unibe.ch/research/bytesurgeon
http://scg.unibe.ch/research/changeboxes
http://scg.unibe.ch/research/changeboxes
http://scg.unibe.ch/research/reflectivity
http://scg.unibe.ch/research/reflectivity
http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/helvetia

Opal Compiler

> Opal Compiler for Pharo
— http://scg.unibe.ch/research/OpalCompiler

Thursday, March 10, 2011

http://scg.unibe.ch/research/OpalCompiler
http://scg.unibe.ch/research/OpalCompiler

Opal Compiler

> Fully reified compilation process:
— Scanner/Parser (RBParser)
— builds AST (from Refactoring Browser)
— Semantic Analysis: OCASTSemanticAnalyzer
— annotates the AST (e.g., var bindings)
— Translation to IR: OCAST Translator
— uses IRBuilder to build IR (Intermediate Representation)
— Bytecode generation: IRTranslator
— uses OCBytecodeGenerator to emit bytecodes

Thursday, March 10, 2011

Compiler: Overview

code | SCaMNer| pgr | Semantic | ,gp Code | g iocode
/ Parser Analysis Generation

Code generation in detail

Build Bytecode
AST IR YIeCOUS | B tecode
IR Generation
OCAST Translator IRTranslator
IRBuilder OCBytecodeGenerator

Thursday, March 10, 2011

Compiler: Design Decisions

> Every building block of the compiler is implemented as a
visitor on the representation.

> The AST is never changed

Thursday, March 10, 2011

Compiler: AST

> AST: Abstract Syntax Tree
— Encodes the Syntax as a Tree
— No semantics yet!
— Uses the RB Tree:

Visitors

Transformation (replace/add/delete)
Pattern-directed TreeRewriter
PrettyPrinter

RBProgramNode
RBDoItNode
RBMethodNode
RBReturnNode
RBSequenceNode
RBValueNode

RBArrayNode
RBAssignmentNode
RBBlockNode
RBCascadeNode
RBLiteralNode
RBMessageNode
RBOptimizedNode
RBVariableNode

Thursday, March 10, 2011

Compiler: Syntax

> Before: SmaCC: Smalltalk Compiler Compiler

— Similar to Lex/Yacc
— SmaCC can build LARL(1) or LR(1) parser

> Now: RBParser

> Future: PetitParser

Thursday, March 10, 2011

A Simple Tree

RBParser parseExpression: '3+4'| NB:explore it

x B RBMessageNode(3 + 4) 0
v root: REMessageNode(3 + 4) .
b parent: RESequenceNode(3 + 4) A

comments: nil
parentheses: nil
w receiver: RBLiteralNode(3)
p parent: REMessageNode(3 + 4)
comments: nil
parentheses: nil
p token: RBLiteralToken(3)
value: nil
selector: ¥+
p selectorParts: an Arrav(REBinarvSelectorToken
v arguments: *(RBLiteralNode(4))
b 1: RELiteralNode{4)

Thursday, March 10, 2011

A Simple Visitor

RBProgramNodeVisitor new visitNode: tree

Does nothing except
walk through the tree

Thursday, March 10, 2011

TestVisitor

instanceVariableNames: 'literals’
classVariableNames: ''
poolDictionaries: '

category: 'Compiler-AST-Visitors'

literals add: alLiteralNode value.

TestVisitor>>initialize
literals := Set new.

TestVisitor>>literals

RBProgramNodeVisitor subclass: #TestVisitor

TestVisitor>>acceptLiteralNode: aLiteralNode

“literals
tree := RBParser parseExpression: '3 + 4'.
(TestVisitor new visitNode: tree) literals
a Set(3 4)

Thursday, March 10, 2011

Compiler: Semantics

> We need to analyze the AST

— Names need to be linked to the variables according to the
scoping rules

> QOCASTSemanticAnalyzer implemented as a Visitor
— Subclass of RBProgramNodeVisitor
— Visits the nodes
— Grows and shrinks scope chain
— Methods/Blocks are linked with the scope

— Variable definitions and references are linked with objects
describing the variables

Thursday, March 10, 2011

Scope Analysis

testBlockTemp
| block blockl block2 |
block := [:arg | [arg] 1.

blockl := block wvalue: 1.
block2 := block wvalue: 2.

Thursday, March 10, 2011

Scope Analysis

testBlockTemp
| block blockl block2 |
block := [:arg | [arg] 1.

blockl := block wvalue: 1.
block2 := block wvalue: 2.

OCClassScope
OCInstanceScope
OCMethodScope 2
OCBlockScope 3
OCBlockScope 4

Thursday, March 10, 2011

Compiler: Semantics

> QCASTClosureAnalyzer

— Eliot’s Closure analysis: copying vs. tempvector

Thursday, March 10, 2011

Closures

counterBlock
| count |
count := 0.
“[count := count + 1].

Thursday, March 10, 2011

Closures

> Break the dependency between the block
activation and its enclosing contexts for
accessing locals

Thursday, March 10, 2011

Contexits

inject: thisValue into: binaryBlock

| nextvalue |
nextValue := thisValue.
self
do: [:each |
nextValue := binaryBlock

value: nextValue value:

“nextValue

each].

Thursday, March 10, 2011

Contexits

inject: thisValue into: binaryBlock

| indirectTemps |

indirectTemps := Array new: 1.

indirectTemps at: 1 put: thisValue.
" was nextValue := thisValue."

self do:

[teach |

indirectTemps
at: 1

put: (binaryBlock
value: (indirectTemps at: 1)
value: each)].
“indirectTemps at: 1

Thursday, March 10, 2011

Contexits

inject: thisValue into: binaryBlock
| indirectTemps |
indirectTemps := Array new: 1.
indirectTemps at: 1 put: thisValue.
self do: (thisContext
closureCopy:
[teach |
binaryBlockCopy indirectTempsCopy |
indirectTempsCopy
at: 1
put: (binaryBlockCopy
value: (indirectTempsCopy at:
value: each)]
copiedValues:
(Array with: binaryBlock with: indirectTemps)).
“indirectTemps at: 1

1)

Thursday, March 10, 2011

Closures Analysis

Thursday, March 10, 2011

Closures Analysis

a Is copied

Thursday, March 10, 2011

Closures Analysis

| index block collection |
index := 0.
block := [
collection add: [index].
index := index + 1].
[index < 5] whileTrue: block.

Thursday, March 10, 2011

Closures Analysis

| index block collection |
index := 0.
block := [
collection add: [index].
index := index + 1].
[index < 5] whileTrue: block.

Index Is remote

Thursday, March 10, 2011

Compiler: Intermediate Representation

> |R: Intermediate Representation
— Semantic like Bytecode, but more abstract
— Independent of the bytecode set
— IR is atree

— IR nodes allow easy transformation
— Decompilation to RB AST

> IR is built from AST using OCAST Translator:
— AST Visitor
— Uses IRBuilder

Thursday, March 10, 2011

Compiler: Intermediate Representation

IRBuilder new
pushLiteral:

storeInstVar:

popTop;
pushInstVar:
returnTop;

i1r.

34
2

we e

2;

17
18
19
20

<20> pushConstant:
<61> popIntoRcvr: 1

<01> pushRcvr:
<7C> returnTop

1

34

Thursday, March 10, 2011

Compiler: Bytecode Generation

> |R needs to be converted to Bytecode

— IRTranslator: Visitor for IR tree
— Uses OCBytecodeGenerator to generate Bytecode
— Builds a compiledMethod

— Details to follow next section

testReturnl

pushLiteral:
returnTop;
ir.

| iRMethod aCompiledMethod |
iRMethod := IRBuilder new

1;

self should:
[(aCompiledMethod

arguments: #()

valueWithReceiver:

) =

aCompiledMethod := iRMethod compiledMethod.

nil
1].

Thursday, March 10, 2011

Roadmap

>
>
>
>

The Pharo compiler

Introduction to Smalltalk bytecode
Generating bytecode with IRBuilder
ByteSurgeon

Thursday, March 10, 2011

Reasons for working with Bytecode

> (@Generating Bytecode
— Implementing compilers for other languages
— Experimentation with new language features

> Parsing and Interpretation:
— Analysis (e.g., self and super sends)
— Decompilation (for systems without source)
— Printing of bytecode
— Interpretation: Debugger, Profiler

Thursday, March 10, 2011

The Pharo Virtual Machine

> Virtual machine provides a virtual processor
— Bytecode: The “machine-code” of the virtual machine

> Smalltalk (like Java): Stack machine
— easy to implement interpreters for different processors
— most hardware processors are register machines

> Squeak VM: Implemented in Slang
— Slang: Subset of Smalltalk. (“C with Smalltalk Syntax”)
— Translated to C

Thursday, March 10, 2011

Bytecode in the CompiledMethod

> CompiledMethod format: o compiuN

self * 1536
all bytecodes & "primitive: 0 A
header
literall numargs: 0
Header Number of literal2 numTemps: 0
temps, literals... literal3 numLiterals: 3
’ 17 frameSize: 16
ig isClosureCompiled: false
. Array of all . isBlockMethod: false”
Literals rray of & g
Literal Objects 52
23
Bytecode
p Pointer to :
Trailer —————
Source

(Number>>#asInteger) inspect

(Number methodDict at: #asInteger) inspect

Thursday, March 10, 2011

Bytecodes: Single or multibyte

> Different forms of bytecodes:

— Single bytecodes:
— Example: 120: push self

— Groups of similar bytecodes
— 16: push temp 1
- 17:push temp 2

— upto 31

Type

Offset

— Multibyte bytecodes 4 bits
— Problem: 4 bit offset may be too small
— Solution: Use the following byte as offset
- Example: Jumps need to encode large jump offsets

4 bits

Thursday, March 10, 2011

Example: Number>>asinteger

> Smalltalk code:

Number>>asInteger
"Answer an Integer nearest
the receiver toward zero."

“self truncated

> Symbolic Bytecode

9 <70> self
10 <D0> send: truncated
11 <7C> returnTop

Thursday, March 10, 2011

Example: Step by Step

> 9 <70> self
— The receiver (self) is pushed on the stack

> 10 <D0> send: truncated
— Bytecode 208: send litereral selector 1
— @Get the selector from the first literal

— start message lookup in the class of the object that is on top of
the stack

— result is pushed on the stack

> 11 <7C> returnTop
— return the object on top of the stack to the calling method

Thursday, March 10, 2011

Pharo Bytecode

> 256 Bytecodes, four groups:

— Stack Bytecodes
— Stack manipulation: push / pop / dup

— Send Bytecodes
— Invoke Methods

— Return Bytecodes
— Return to caller

— Jump Bytecodes
— Control flow inside a method

Thursday, March 10, 2011

Stack Bytecodes

> Push values on the stack
— e.g., temps, instVars, literals
— e.g: 16 - 31: push instance variable

> Push Constants
— False/True/Nil/1/0/2/-1

> Push self, thisContext
Duplicate top of stack
> Pop

Thursday, March 10, 2011

Sends and Returns

> Sends: receiver is on top of stack
— Normal send
— Super Sends
— Hard-coded sends for efficiency, e.g. +, -

> Returns
— Return top of stack to the sender
— Return from a block

— Special bytecodes for return self, nil, true, false (for
efficiency)

Thursday, March 10, 2011

Jump Bytecodes

> Control Flow inside one method

— Used to implement control-flow efficiently
— Example:

A

1<2 ifTrue: ['true']

9 <76> pushConstant: 1

10
11
12
13
14
15
16

<77>
<B2>
<99>
<20>
<90>
<73>
<7C>

pushConstant: 2
send: <

jumpFalse: 15
pushConstant: 'true'
jumpTo: 16
pushConstant: nil
returnTop

Thursday, March 10, 2011

Closure Bytecode

> 138 Push (Array new: k)/Pop k into: (Array new: j)
> 140 Push Temp At k In Temp Vector At: |
> 141 Store Temp At k In Temp Vector At: |
> 142 Pop and Store Temp At k In Temp Vector At: |

> 143 Push Closure Num Copied | Num Args k BlockSize |

Thursday, March 10, 2011

Roadmap

>
>
>
>

The Pharo compiler

Introduction to Smalltalk bytecode
Generating bytecode with IRBuilder
ByteSurgeon

Thursday, March 10, 2011

Generating Bytecode

> |RBuilder: A tool for generating bytecode
— Part of the OpalCompiler

> Like an Assembler for Pharo

Thursday, March 10, 2011

IRBuilder: Simple Example

> Number>>asInteger

iRMethod := IRBuilder new

pushReceiver; "push self”

send: #truncated;

returnTop;

ir.
aCompiledMethod := iRMethod compiledMethod.
aCompiledMethod valueWithReceiver:3.5

arguments: #()

Thursday, March 10, 2011

IRBuilder: Stack Manipulation

> poplop
— remove the top of stack

> pushDup
— push top of stack on the stack
pushLiteral:

pushReceiver
— push self

> pushThisContext

Thursday, March 10, 2011

IRBuilder: Symbolic Jumps

> Jump targets are resolved:

> Example: false ifTrue: ['true’] ifFalse: ['false’]
iRMethod := IRBuilder new
pushLiteral: false;
jumpAheadTo: #false if: false;
pushLiteral: 'true'; "ifTrue: ['true']”
jumpAheadTo: #end;
jumpAheadTarget: #false;
pushLiteral: 'false'; "ifFalse: ['false']"
jumpAheadTarget: #end;
returnTop;
ir.

Thursday, March 10, 2011

IRBuilder: Instance Variables

> Access by offset

> Read: pushinstVar:
— receiver on top of stack

> Write: storelnstVar:
— value on stack

> Example: set the first instance variable to 2

pushLiteral:
storeInstVar:
pushReceiver;
returnTop;
ir.

aCompiledMethod :=
aCompiledMethod valueWithReceiver: 1@2 arguments: #()

iRMethod := IRBuilder new

2;
1;
"self"

iRMethod compiledMethod.

2@2

Thursday, March 10, 2011

IRBuilder: Temporary Variables

>
>
>
>
>

Accessed by name

Define with addTemp: / addTemps:
Read with pushTemp:

Write with storeTemp:

Example:
— set variables a and b, return value of a

iRMethod := IRBuilder new
addTemps: #(a b);
pushLiteral: 1;
storeTemp: #a;
pushLiteral: 2;
storeTemp: #b;
pushTemp: #a;
returnTop;
ir.

Thursday, March 10, 2011

IRBuilder: Sends

> normal send

builder pushLiteral: ‘hello’
builder send: #size;

> super send

builder send: #selector toSuperOf: aClass;

— The second parameter specifies the class where the lookup
starts.

Thursday, March 10, 2011

IRBuilder: Example

OCInstanceVar>>emitStore: methodBuilder
methodBuilder storeInstVar: index

Thursday, March 10, 2011

IRBuilder: Example

OCInstanceVar>>emitStore:
methodBuilder
pushReceiver;
pushLiteral:

methodBuilder

index;

send: #instVarAt

Thursday, March 10, 2011

IRBuilder: Example

OCInstanceVar>>emitStore: methodBuilder
methodBuilder
pushReceiver;
pushLiteral: index;
send: #instVarAt:

This is global and we do not have much
control

Thursday, March 10, 2011

Roadmap

>
>
>
>

The Pharo compiler

Introduction to Pharo bytecode
Generating bytecode with IRBuilder
ByteSurgeon

Thursday, March 10, 2011

ByteSurgeon

Library for bytecode transformation in Smalltalk
Full flexibility of Smalltalk Runtime

Provides high-level API

For Pharo, but portable

vV V V V

> Runtime transformation needed for
— Adaptation of running systems
— Tracing / debugging
— New language features (MOP, AOP)

Thursday, March 10, 2011

Example: Logging

> (@Goal: logging message send.
> First way: Just edit the text:

example

self test. E::£>>

example
Transcript show: ‘sending #test’.

self test.

Thursday, March 10, 2011

Logging with ByteSurgeon

> @Goal: Change the method without changing program
text

> Example:

(Example>>#example)instrumentSend: [:send |
send insertBefore:
‘Transcript show: ‘’sending #test’’ ‘.

Thursday, March 10, 2011

Logging: Step by Step

(Example>>#example) instrumentsSend: |[:send |
send insertBefore:
‘Transcript show: ‘’sending #test’’ ‘.

Example >> #example

BN

Class ‘ Name of Method

>>: - takes a name of a method
- returns the CompiledMethod object

Thursday, March 10, 2011

Logging: Step by Step

(Example>>#example)instrumentSend: [:send |
send insertBefore:
‘Transcript show: ‘’‘sending #test’’ ‘.

> instrumentSend:

— takes a block as an argument
— evaluates it for all send bytecodes

Thursday, March 10, 2011

Logging: Step by Step

(Example>>#example)instrumentSend: [:send |
send insertBefore:
‘Transcript show: ‘’sending #test’’ ‘.

> The block has one parameter: send
> |t is executed for each send bytecode in the method

Thursday, March 10, 2011

Logging: Step by Step

(Example>>#example)instrumentSend: [:send |
send insertBefore:
‘Transcript show: ‘’sending #test’’ ‘.

> QObijects describing bytecode understand how to insert
code
— insertBefor
— insertAfter
— replace

Thursday, March 10, 2011

Logging: Step by Step

(Example>>#example)instrumentSend: [:send |

send insertBefore:
‘Transcript show: ‘’sending #test’’ ‘.

> The code to be inserted.
> Double quoting for string inside string
— Transcript show: 'sending #test’

Thursday, March 10, 2011

Inside ByteSurgeon

> Uses IRBuilder internally

Decompile Compile
Bytecode > IR >

> Transformation (Code inlining) done on IR

Bytecode

Thursday, March 10, 2011

ByteSurgeon Usage

> On Methods or Classes:

MyClass instrument: [....].

(MyClass>>#myMethod) instrument:

> Different instrument methods:
— instrument:
— instrumentSend:
— instrumentTempVarRead:
— instrumentTempVarStore:
— instrumentTempVarAccess:
— same for InstVar

Thursday, March 10, 2011

Advanced ByteSurgeon

> (Goal: extend a send with after logging

example

self test. E::{:>

example
self test.
Logger logSendTo: self.

Thursday, March 10, 2011

Advanced ByteSurgeon

> With ByteSurgeon, something like:

(Example>>#example)instrumentSend: [:send |
send insertAfter:
‘Logger logSendTo: ?'

> How can we access the receiver of the send?
> Solution: Metavariable

Thursday, March 10, 2011

Advanced ByteSurgeon

> With Bytesurgeon, something like:

(Example>>#example)instrumentSend: [:send |
send insertAfter:
‘Logger logSendTo: <meta: #receiver>’

> How can we access the receiver of the send?
> Solution: Metavariable

Thursday, March 10, 2011

Implementation Metavariables

> Stack during send:

receiver

argl :>

arg2 result
before after

> Problem I: After send, receiver is not available
> Problem II: Before send, receiver is deep in the stack

Thursday, March 10, 2011

Implementation Metavariables

> Solution: ByteSurgeon generates preamble
— Pop the arguments into temps
— Pop the receiver into temps
— Rebuild the stack
— Do the send
— Now we can access the receiver even after the send

Thursday, March 10, 2011

Implementation Metavariables

25 <70> self

26 <8140> storelntoTemp: 0 Preambe

28 <D0> send: test

Inlined Code

33 <87> pop
34 <78> returnSelf

Thursday, March 10, 2011

Why do we care?

> Helvetia — Context Specific Languages with
Homogeneous Tool Integration

> Reflectivity — Unanticipated partial behavioral reflection.

> Albedo — A unified approach to reflection.

Thursday, March 10, 2011

http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/reflectivity
http://scg.unibe.ch/research/reflectivity
http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/helvetia

Helvetia

----- Pidgin
------ Creole Rules
- = = Argot
" <parse> <transformb, <attribute>

Executable
Code

Source
Code

Smalltallg

--- .

“7" " Parser

Traditional Smalltalk Compiler

Thursday, March 10, 2011

Helvetia

----- Pidgin
------ Creole Rules
- = = Argot
" <parse> <transformb, <attribute>

Executable
Code

Source
Code

Smalltallg

--- .

“7" " Parser

Traditional Smalltalk Compiler

Thursday, March 10, 2011

Helvetia

----- Pidgin
------ Creole Rules
- = = Argot
" <parse> <transformb, <attribute>

Executable
Code

Source
Code

Smalltallg

--- .

“7" " Parser

Traditional Smalltalk Compiler

Thursday, March 10, 2011

Helvetia

----- Pidgin
------ Creole Rules
- = = Argot
" <parse> <transformb, <attribute>

Executable
Code

Source
Code

Smalltallg

--- .

“7" " Parser

Traditional Smalltalk Compiler

Thursday, March 10, 2011

Helvetia

----- Pidgin
------ Creole Rules
- = = Argot
.;“<parse> <transfor.n'1>‘ <attribute>
™M
- /] 1
". 1 .
Source Smalltalk ,§emantié' Executable
Code """~ "Pais&r Analysis Code

Thursday, March 10, 2011

Reflectivity

meta-object

activation
condition

/J source code

7 =7 (AST)

Thursday, March 10, 2011

Reflectivity

meta-object

activation
condition

/J source code

7 =7 (AST)

Thursday, March 10, 2011

Reflectivity

meta-object

activation
condition

/J source code

7 =7 (AST)

Thursday, March 10, 2011

Reflectivity

meta-object

activation
condition

/J source code

7 =7 (AST)

Thursday, March 10, 2011

Reflectivity

meta-object

activation
condition

/J source code

7 =7 (AST)

ReflectV 1ty

Thursday, March 10, 2011

Albedo

Meta-objects

QG

\

Source code
(AST)

Thursday, March 10, 2011

Albedo

Meta-objects

QG

\

Source code
(AST)

Thursday, March 10, 2011

Albedo

Meta-objects

QG

\

Source code
(AST)

Thursday, March 10, 2011

Albedo

Meta-objects

QG

\

Source code
(AST)

Thursday, March 10, 2011

Albedo

Meta-objects

QG

\

Source code
(AST)

AlbedO

Ressia 2010

Thursday, March 10, 2011

Opal Compiler

http://scg.unibe.ch/research/OpalCompiler

Thursday, March 10, 2011

http://scg.unibe.ch/research/OpalCompiler
http://scg.unibe.ch/research/OpalCompiler

