
Extending the Collection Hierarchy 1 Juanita Ewing

Extending the Collection

Hierarchy

Juanita J. Ewing

 Instantiations, Inc.

Copyright 1994, Juanita J. Ewing

Derived from Smalltalk Report

Last month, I discussed creating subclasses and two heuristics for selecting superclasses.
This month I will continue the discussion about subclassing with a case study that extends
the Collection hierarchy. In this case study, we will create a new Collection class that
contains unique elements and also maintains the order of these elements.

Heuristics Review

A key step in creating a new subclass is to select a suitable superclass. The heuristics for
selecting a superclass are:

Heuristic One: Look for a class that fits the is-kind-of or is-type-of relationship with your
new subclass.

Heuristic Two: Look for a class with behavior that is similar to the desired behavior of the
new subclass.

Case Study

We want create a new data structure class that holds elements in order and disallows
duplicate elements. When sent a request to add a duplicate object, the request should be
quietly ignored.

This new data structure class contains elements, so is similar to Arrays, Strings and other
Collection subclasses. Because of these similarities, we will begin our search for
candidate superclasses in the Collection hierarchy. Two classes immediately stand out.

• OrderedCollections keep elements in order.

• Sets store each element only once, disallowing duplicate elements.

Extending the Collection Hierarchy 2 Juanita Ewing

The combination of these characteristics is what we are seeking for our new class. A good
descriptive name for our new class is OrderedSet.

Apply Heuristics

Where should we insert our new class, OrderedSet, into the hierarchy? Our first heuristic
is to look for potential superclasses that match the is-kind-of criteria. We use is-kind-of as a
shorthand for categorization based on characteristics. The significant characteristics we use
in this determination, and the classes that have them are:

• varying number of elements (Collection)

• store arbitrary objects (Collection)

• dynamically add and remove elements (Collection)

• enumeration (Collection)

• store elements in order (OrderedCollection)

• store unique elements (Set)

The desired characteristics of OrderedSet are closest to those of OrderedCollection and
Set, so OrderedSet could be a-kind-of Set or a-kind-of OrderedCollection.

In a system that supports multiple inheritance, we might be tempted to have two
superclasses, Set and OrderedCollection. In Smalltalk we must choose a single
superclass, either Set or OrderedCollection.

Our second heuristic is to choose candidate superclasses with suitable public behavior.
Let's compare the candidate classes we've selected, Set and OrderedCollection , in
terms of behavior. Set and OrderedCollection have a common superclass, Collection,
so we will ignore public behavior from the Collection on up.

If we were to make OrderedSet a subclass of Set, it would inherit these methods from
Set.

add:
do:
includes:
occurencesOf:
remove:ifAbsent:
size:

All of these methods also have an implementation in the abstract superclass Collection, so
Set doesn't add any new public behavior to the behavior from the common superclass.

If OrderedSet were a subclass of OrderedCollection, it would inherit behavior from
OrderedCollection and IndexedCollection (or OrderedCollection and

Extending the Collection Hierarchy 3 Juanita Ewing

SequencableCollection in Objectworks\Smalltalk). OrderedCollection has adding and
removing methods and many more methods related to its element ordering characteristic.
The list of methods includes

add:
add:after:
add:afterIndex:
add:before:
add:beforeIndex:
addFirst:
addLast:
remove:ifAbsent:
removeFirst:
removeLast:

Many of these methods are extensions of the public behavior from the common superclass
Collection.

The public behaviors for Sets and OrderedCollections have some similarities. In fact,
the behavior of Set is a subset of the behavior of OrderedCollection, which makes Set
the behavioral supertype of OrderedCollection. Set doesn’t add any additional behavior,
so we just need to determine whether the additional behavior in OrderedCollection is
desirable.

Because instances of OrderedSet maintain elements in order, we will need public
behavior to support the ordering characteristic. The behavior in OrderedCollection is a
good set of behavior for supporting this characteristic. In addition, if the behavior of
OrderedSet is the same as for OrderedCollection, the interchangeability of the classes
is better and therefore the classes are easier to reuse. Based on behavioral analysis, the best
superclass for OrderedSet is OrderedCollection.

Implementation

We can also look in more detail at what is required to implement OrderedSet. The
implementation of OrderedCollection uses an indexable portion or indexable object, and
instance variables to keep track of the indices that are valid. Set is implemented with
hashing for efficiency in determining uniqueness of elements. If a Set already contains an
element, it quietly ignores the request to add an element.

OrderedSet needs to support instances with a large number of elements. Hashing the
elements is a good way to support large numbers. OrderedCollections would potentially
have to examine every element before determining if the addition of an element would be a
duplication. To maintain order and enforce uniqueness we will use two structures, one to
implement the unique elements characteristic, and one to implement the ordering
characteristic, as shown in Figure 1.

Extending the Collection Hierarchy 4 Juanita Ewing

structure for
maintaining order

structure for
enforcing uniqueness

Figure 1. Using multiple structures.

Now we will examine the implementations with each of our candidate superclasses. If
OrderedSet is a subclass of OrderedCollection, we inherit the portion that stores
elements in order and need to implement the portion that does the hashing and enforces
uniqueness. The structure and behavior for maintaining order is inherited from
OrderedCollection, and the structure for enforcing uniqueness can be stored in an
instance variable. This structure could be an instance of Set.

With this alternative, some inherited methods would need to be overridden. All the add and
remove methods must potentially be altered to maintain both structures. As we saw in the
list of public behavior, there are a number of these methods, such as add:, add:after:,
add:afterIndex:, addFirst:, removeFirst and removeLast. Fortunately, not all of these
methods have to be overridden because some of these methods call each other. We would
also want to override includes: because the hashing used in the uniqueness structure gives
us a quick look up of elements. We wouldn’t override do: because it operates on the
inherited structure that maintains order.

If OrderedSet were a subclass of Set, the inherited structure is the one that enforces
uniqueness and an auxiliary structure for maintaining order is referenced from an instance
variable. Presumably, the order maintaining structure would be an instance of
OrderedCollection .

Extending the Collection Hierarchy 5 Juanita Ewing

We would also need to override adding and removing methods, and there is just one of
each. The majority of the coding is in implementing behavior that implements the element
ordering characteristic. We wouldn’t need to override includes: because we inherit the
version that makes use of hashing, but we would need to override do: so that we process
elements in the ordered defined by the order maintaining structure.

Naming

The other criteria that might bias our judgment is implications of a class name. If the class
hierarchy is part of the public interface for a library, it might be easier for users to locate a
class if it is located in a logical place in the hierarchy. If we have a class called
OrderedSet, people are more likely to look for this class as a specialization of Set. They
might not find the class as easily if it is a subclass of OrderedCollection.

Conclusion

We choose to make OrderedSet a subclass of OrderedCollection because

• the behavior of OrderedCollection is more suitable than the behavior of Set

• it is more likely that the behavior will be interchangeable if the relationship between
the two classes is explicit

• there are fewer methods, overridden and new, that must be implemented in
OrderedSet.

Furthermore, we argue that in browsing the Collection hierarchy, developers will
generally examine several Collection classes at a time, and will probably notice
OrderedSet as a subclass of OrderedCollection.

The is-kind-of heuristic is useful for generating candidate superclasses. It’s intuitive nature
can be an advantage. However, analysis of public behavior usually yields a better selection.
If we used just the is-kind-of heuristic in our case study, we would be most likely to make
OrderedSet a subclass of Set. Yet when we use the public behavior heuristic, we
conclude that OrderedCollection is a better choice.

